期刊文献+

显式评分的重启动随机游走推荐算法研究 被引量:6

Research on Random Walk with Restart Recommendation Algorithm of Explicit Rating
原文传递
导出
摘要 针对目前重启动随机游走推荐算法偏重隐式评分而忽略显式评分的问题,采用监督重启动随机游走算法,使得用户喜爱的项目被访问的概率大于用户不喜爱的项目的概率,从而做出推荐。实验表明,该算法可以有效地提高推荐的准确性。 Aiming at random walk with restart recommendation algorithm mainly for implicit ratings while ignoring explicit ratings, this paper sets random walk under supervision to make recommendation, that makes the probabilities of items which user likes are greater than those of items which user dislikes. Experiment result demonstrates that this algorithm improves the accuracy of recommendation.
作者 俞琰 邱广华
出处 《现代图书情报技术》 CSSCI 北大核心 2012年第3期8-14,共7页 New Technology of Library and Information Service
关键词 显式评分 重启动随机游走 个性化推荐 Explicit rating Random walk with restart Personalized recommendation
  • 相关文献

同被引文献52

  • 1邢春晓,高凤荣,战思南,周立柱.适应用户兴趣变化的协同过滤推荐算法[J].计算机研究与发展,2007,44(2):296-301. 被引量:148
  • 2杨平,郑金华.遗传选择算子的比较与研究[J].计算机工程与应用,2007,43(15):59-62. 被引量:46
  • 3Wang Z Q, Tan Y W, Zhang M. Graph - based Recommendation on Social Networks[ C ]. In: Proceedings of the 12th International Asia- Pacific Web Conference ( APWEB ) , Busan. 2010: 116- 122.
  • 4Fouss F, Pirotte A, Renders J M, et al. Radnom - walk Computa- tion of Similarities Between Nodes of a Graph with Application to Collaborative Recommendation [ J ]. IEEE Transactions on Knowl- edge and Data Engineering, 2007,19(3) :355 -369.
  • 5Yildirim H, Krishnamoorthy M S. A Random Walk Method for Al- leviating the Sparsity Problem in Collaborative Filtering [ C ]. In : Proceedings of the 2008 ACM Conference on Recommender Systems (RecSys'08). USA:ACM, 2008:131 -138.
  • 6Konstas I, Stathopoulos V, Jose J M. On Social Networks and Col-laborative Recommendation[ C]. In: Proceedings of the 32nd Inter- national ACM SIGIR Conference on Research and Development in In- formation Retrieval. USA : ACM, 2009 : 195 - 202.
  • 7Tong H H, Faloutsos C, Pan J Y. Fast Random Walk With Restart and Its Applications [ C ]. In: Proceedings of the 6th International Conference on Data Mining ( ICDM' 06 ). USA : IEEE CPS, 2006 : 613 -622.
  • 8Wu P, Yeung C H, Liu W, et al. Time Aware Collaborative Filte- ring with Piecewise Decay Functionl[ J/OL]. [ 2012 - 03 - 01 ]. http ://arxiv. org/abs/1010. 3988.
  • 9Koren Y. Collaborative Filtering with Temporal Dynamics [ J ]. Communications of the ACM, 2010,53(4) :89 -97.
  • 10Cao H H, Chen E, Yang J, et al. Enhancing Recommender Sys- tems Under Volatile Userinterest Drifts [ C ]. In : Proceedings of the 18th ACM Conference on Information and Knowledge Mangement. USA: ACM, 2009:1257 - 1266.

引证文献6

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部