期刊文献+

一种非均匀噪声下的DOA估计算法

A DOA Estimation Algorithm in Non-Uniform Noise
下载PDF
导出
摘要 通用协方差差分算法用来实现对空间非均匀噪声环境下相干信号的波达方向(DOA)估计,该算法可以完全消除空间非均匀噪声,且适用于低信噪比环境,但该算法的DOA估计结果存在伪峰。针对这一问题,提出了一种改进的算法。改进算法通过对通用协方差差分(GCD)算法的信号协方差矩阵进行变换,再用特征分解的方法得到信号的DOA估计值。改进的算法可以完全消除伪峰,理论分析和仿真实验验证了改进算法的有效性。 Generalized covariance differencing (GCD) algorithm is proposed for direction of arrival (DOA) estimation in the presence of coherent sources and unknown non-uniform noise. It can fully elim- inate spatially non-uniform noise and fit for low signal to noise ratio (SNR) environments. However, the DOA result of GCD algorithm has phantom peaks. To resolve this problem, an improved algorithm is pro- posed. A new source eovarianee matrix can be obtained by the transformation of the source covariance matrix of GCD algorithm. Then, actual DOA of the source is achieved by eigenvalue decomposition of the new source eovariance. The improved algorithm can totally eliminate the phantom peaks. The computer simulation testifies the validity of the improved algorithm.
作者 王江 丁亚非
机构地区 电子工程学院
出处 《现代防御技术》 北大核心 2012年第2期127-131,共5页 Modern Defence Technology
关键词 空间非均匀噪声 相干信号 波达方向(DOA)估计 协方差差分 spatial non-uniform noise coherent signal direction of arrival estimation generalized covariance difference
  • 相关文献

参考文献12

  • 1KUNDU D. Modified MUSIC Algorithm for Estimation DOA of Signals[J].Signal Processing,1996,(01):85-90.doi:10.1016/0165-1684(95)00126-3.
  • 2RAO B D,HARI K S. Performance Analysis of RootMUSIC[J].IEEE Transactions on Acoustics,Speech and Signal Processing,1989,(12):1939-1949.
  • 3何子述,黄振兴,向敬成.修正MUSIC算法对相关信号源的DOA估计性能[J].通信学报,2000,21(10):14-17. 被引量:65
  • 4石新智,王高峰,文必洋.修正MUSIC算法对非线性阵列适用性的讨论[J].电子学报,2004,32(1):147-149. 被引量:9
  • 5SINATH H,REDDY V U. Analysis of MUSIC Algorithm with Sensor Gain and Phase Perturbations[J].Signal Processing,1991,(03):245-256.
  • 6LI Fu,VACCARO R. Performance Degradation of DOA Estimators Due to Unknown Noise Fields[J].IEEE Transactions on Signal Processing,1992,(03):686-690.doi:10.1109/78.120813.
  • 7CADZOW J A. A High Resolution Direction of Arrival Algorithm for Narrow-Band Coherent and Incoherent Sources[J].IEEE Transactions on Acoustics,Speech and Signal Processing,1988,(07):965-979.doi:10.1109/29.1618.
  • 8CLERGEOT H,TRESSENS S,OUAMRI A. Performance of High Resolution Frequencies Estimation Methods Compared to the Cramer-Rao Bound[J].IEEE Transactions on Acoustics,Speech and Signal Processing,1989,(11):1703-1720.doi:10.1109/29.46553.
  • 9PESAVENTO M,GERSHMAN A B. Maximum-Likelihood Direction of Arrival Estimation in the Presence of Unknown Nonuniform Noise[J].IEEE Transactions on Signal Processing,2001,(07):1310-1324.doi:10.1109/78.928686.
  • 10SCHMIDT R O. Multiple Emitter Location and Signal Parameter Estimation[J].IEEE Transactions on Antennas and Propagation,1986,(05):276-280.

二级参考文献9

  • 1刘伟.从交叉环/单极子天线数据中提取海洋表面流[M].武汉:武汉大学电子信息学院,2001..
  • 2[1] STOICA P,NEHORAI A.MUSIC,maximum likelihood,and Cramer-Rao bound[J].IEEE Trans on ASSP,May 1989,37(5):720-741.
  • 3[2] KAVEH M,BARABELL A J.The statistical performance of the MUSIC and the minimum-norm algorithms in resolving plane waves in noise[J].IEEE Trans on ASSP,April 1986,34(4):331-341.
  • 4[3] SHAN T J,WAX M,KAILATH T.On spatial smoothing for direction-of-arrival estimation of coherent signals[J].IEEE Trans on ASSP,Aug 1985,33:806-811.
  • 5[4] WILLIAMS R T,PRASAD S,MAHALANABIS A K,et al.An improved spatial smoothing technique for bearing estimation in a multipath environment[J].IEEE Trans on ASSP,April 1988,36:425-432.
  • 6[5] TAGA F,SHIMOTAHIRA H.A novel spatial smoothing technique for the MUSIC algorithm[J].IEICE Trans commun,1995,78-B:1513-1517.
  • 7[6] KUNDU D.Modified MUSIC algorithm for estimating DOA of signals[J].Signal Processing,1996,(48):85-89.
  • 8何子述,黄振兴,向敬成.基于数据阵共轭重构的MUSIC角估计算法[J].电子科技大学学报,1999,28(2):111-115. 被引量:9
  • 9何子述,黄振兴,向敬成.修正MUSIC算法对相关信号源的DOA估计性能[J].通信学报,2000,21(10):14-17. 被引量:65

共引文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部