期刊文献+

基于改进粒子群算法的BP神经网络模型研究 被引量:4

BP Neural Network Model Research Based on Improved Particle Swarm Optimization Algorithm
下载PDF
导出
摘要 为解决BP神经网络局部性收敛度慢的问题,提出了基于改进粒子群算法的BP神经网络模型.该方法通过粒子群进化速率动态调整惯性权重因子,提高了算法的收敛速度和全局搜索最优值的能力.提出的模型和改进的算法模拟仿真表明:该方法对收敛速度和精度有更好的拟合性. To solve local convergence ot slow problems ot Bt" neural network, a tit" neural network model based on improved particle swarm optimization (PSO) algorithm was proposed. The convergence speed and theability of optimal value global searching were promoted by evolutionary rate adaptive inertia weight factor. Final- ly, the fitness of convergence speed and accuracy was validated by practical application through simulating the model and the improved algorithm.
出处 《佳木斯大学学报(自然科学版)》 CAS 2012年第1期107-109,共3页 Journal of Jiamusi University:Natural Science Edition
关键词 粒子群算法 进化速率 惯性权重因子 BP神经网络 particle swarm optimization algorithm Evolutionary rate Inertia weight factor BP neuralnetwork
  • 相关文献

参考文献3

二级参考文献21

  • 1李宁,孙德宝,岑翼刚,邹彤.带变异算子的粒子群优化算法[J].计算机工程与应用,2004,40(17):12-14. 被引量:60
  • 2赫然,王永吉,王青,周津慧,胡陈勇.一种改进的自适应逃逸微粒群算法及实验分析[J].软件学报,2005,16(12):2036-2044. 被引量:134
  • 3Kennedy J,Eberhert R. Particle swarm optimization///IEEE International Conference on Neural Networks. 1995:1942- 1948
  • 4Elegbede C. Structural reliability assessment based on particles swarm optimization[J]. Structral Safety, 2005,27 (10) : 171-186
  • 5Pobinson J , Rahmat - Samii Y. Particle swarm optimization in electromagnetics[J]. IEEE Transactions on Antennas and Propagation, 2004,52 (2) : 397-406
  • 6Salman A, Ahmad I, Al-Madani S. Particle swarm optimization for task assignment problem[J]. Microprocessors and Microsystems, 2002,26 (8) : 363-371
  • 7Shi Y, Eberhart R. Empirical study of particle swarm optimization[A]//International Conference on Evolutionary Compution[C]. Washington, USA: IEEE, 1999,1945-1950
  • 8Shi Y, Eberhart R. Fuzzy adaptive particle swarm optimization [A]. The IEEE Congress on Evolutionary Compution[C], San Francisco, USA: IEEE, 2001 : 101- 106
  • 9Eberhart R , Shi Y. Tracking and optimizing dynamic systems with particle swarm[A]. The IEEE Congress on Evolutionary Computatiion[C].San Francisco, USA: IEEE, 2001 : 94-100
  • 10[1]Chen S,BIlling S A. Neural Network for Nonlinear Dynamic System Modeling and Identification [J]. Int Journal of Control, 1992,56(2): 319~346.

共引文献69

同被引文献27

引证文献4

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部