期刊文献+

平面型热声转换装置的特性分析

Characteristic analysis of planar thermoacoustic transducer
下载PDF
导出
摘要 利用热声效应制作出一种由加热层、绝缘层和储热层构成的平面型热声转换装置.对加热层输入交变电压信号时,由于焦耳效应及各层材料的不同热力学特性,其表面附近区域会产生相应的声波.通过对装置模型进行理论分析,推导出装置输出声压及效率的表达关系式,并利用高速数据采集系统及红外成像仪对装置工作特性进行了实验研究.结果表明:该平面型热声转换装置的输出声压和效率随输入电功率的增大而增大;环境温度对装置输出声压的影响较小;通过对装置表面静态温度场分布进行分析,得到装置结构的优化方法.该装置实现了电能、热能、声能之间的转换,具有无任何运动部件、频率可控、稳定性高等优点,因而可广泛用于电声换能领域. Based on the thermoacoustic effect, a type of planar therrnoacoustic transducer composed of a heating surface, an insulation layer and a thermal storage substrate is manufactured. When the alternative voltage signal is input to the heating surface, the sound wave can be obtained near the heating surface area due to the Joule heating effect and the different thermodynamic characteristics ofthe materials in each layer. Through the theoretical analysis of the transducer, the expression of the sound pressure and the efficiency are obtained. The operating characteristics of the transducer are studied by the high-speed data acquisition system and the infrared camera.The experimental resultsshow that the output sound pressure and the efficiency of the transducer are proportional to the input electric power. The influence of the ambient temperature on the output sound pressure is small. The optimization methods of the transducer' s structure are indicated by analyzing the distribution of thestatic temperature field of the transducer' s surface. The conversion of electricity, thermal energy and sound energy can be realized by the transducer. And the transducer has the advantages of no moving parts, controllable frequency, and high stability. So it can be widely used in the electro-acoustic transducer field.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第2期313-317,共5页 Journal of Southeast University:Natural Science Edition
基金 教育部科学技术研究重点资助项目(109073)
关键词 热声 声压 效率 电功率 环境温度 温度场 thermoacoustic sound pressure efficiency electric power ambient temperature tem-perature field
  • 相关文献

参考文献10

  • 1Shinoda H,Nakajima T,Ueno K,et al.Thermally induced ultrasonic emission from porous silicon[J].Nature,1999,400(6747):853-855.
  • 2Tsubaki K,Yamanaka H,Kitada K,et al.Three dimensional image sensing in air by thermally induced ultrasonic emitter based on nanocrystalline porous silicon[J].Jpn J Appl Phys,2005,44(6B):4436-4439.
  • 3Kihara T,Harada T,Kato M,et al.Reproduction of mouse-pup ultrasonic vocalizations by nanocrystalline silicon thermoacoustic emitter[J].Appl Phys Lett,2006,88(4):043902.
  • 4Braun F.Ueber lichtenmission an einigen electroden in electrolyten[J].Ann Der Physic,1898,301 (6):361-364.
  • 5Takashi K,Toshihiro H,Jun H,et al.Ultrasound emission characteristics of a thermally induced sound emitter employing a nanocrystalline silicon layer[J].Jpn J Appl Phys,2004,43(5B):2973-2975.
  • 6Rama Venkatasubramanian.Nanothermal trumpets[J].Nature,2010,463(7281):619-619.
  • 7Niskanen A O,Hassel J,Tikander M,et al.Suspended metal wire array as a thermoacoustic sound source[J].Appl Phys Lett,2009,95(16):163102.
  • 8Hu Hanping,Zhu Tao,Xu Jun.Model for thermoacoustic emission from solids[J].Appl Phys Lett,2010,96(21):214101.
  • 9吴宵军,董卫,陈艳,魏娴.一种新型电—热—声转换装置的特性研究[J].噪声与振动控制,2010,30(3):160-163. 被引量:5
  • 10McDonald F A,Wetsel G C.Generalized theory of the photoacoustic effect[J].Journal of Applied Physics,1978,49(4):2313-2322.

二级参考文献14

  • 1F.Braun.Ueder lichtenmission an einigen electroden in electrolyten[J].Ann der physic,1898,65:358.
  • 2Weinberg,Elektrot[J].Zeit,1907,28:944.
  • 3H.D.Arnold and I.B.Crandall.The thermophone as a precision source of sound[J].Phys.Rev,1917,10(1):22-38.
  • 4E.C.Wente.Electrostatic Transmitter[J].Phys.Rev,1922,19:333-45.
  • 5S.Ballantine.Technique of microphone calibration[J].J.Acoust.Soc.Am,1932,3:319-360.
  • 6H.Shinoda,T.Nakajima,K.Ueno and N.Koshida.Thermally induced ultrasonic emission from porous silicon[J].Nature,1999,400:853.
  • 7R.R.Boullosa,A.O.Santillan.Sound radiation from thermal non-resonant source:planar and nonplanar geometries[J].Jpn.J.Appl.Phys,2006,45(4A):2794-2800.
  • 8F.A.McDonald,G.C.Wetsel Jr.Generalized theory of the photoacoustie effect[J].Jpn.J.Appl.Phys,1978,49(4):2313-2322.
  • 9Akira Kiuchi,Nobuyoshi Koshida.New operating mode of nanocrystalhne silicon ultrasonic emitters for use as audio speakers[J].Jpn.J.Appl.Phys,2005,44(4B):2634-2636.
  • 10K.Tsubaki,T.Komoda and N.Koshida.Acoustic emission characteristics of nanocrystalline porous silicon device driven as an ultrasonic speaker[J].Jpn.J.Appl.Phys,2006,45(4B):3642-3644.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部