摘要
针对现代制造业对高精度机床伺服系统的要求,将数据驱动的无模型自适应控制方法应用到直线伺服系统的位置控制中,控制器设计不包括直线伺服系统结构的任何信息,是直接基于动态线性化模型中伪偏导数的估计和预报,而伪偏导数是根据直线电机电压输入和位置输出在线估计的.永磁同步直线电机运动控制系统的实时实验结果表明,在相同条件下,数据驱动的无模型自适应控制方法的位置跟踪误差比PID减小了0.4mm到2.6mm,比神经网络控制时减小了0.2mm到0.5mm.该方法还提高了对负载扰动的鲁棒性.
To meet the requirements on the high-precision tool-servo system in modern manufacturing industry, we propose a data-driven model-free adaptive control (MFAC) method to control the position of this system. The design of controller requires no structure information of the linear servo system, but makes use of the estimated and predicted pseudo-partial derivatives (PPD) of the dynamic linearization model, that are obtained online from the input-voltage and the output-position of the linear motor. Under the same conditions in real experiments, this method brings about a position- tracking error which is 0.4 mm to 2.6 mm smaller than that of the PID method, and 0.2 mm to 0.5 mm smaller than that of the neural networks (NN) method. The robustness against the load disturbance is also improved.
出处
《控制理论与应用》
EI
CAS
CSCD
北大核心
2012年第3期310-316,共7页
Control Theory & Applications
基金
北京市自然科学基金资助项目(3102013)
国家自然科学基金重点资助项目(60834001)
国家自然科学基金资助项目(51077005)
关键词
数据驱动控制
无模型自适应控制
精密运动控制
永磁同步直线电机
鲁棒性
data-driven control
model-free adaptive control
precision motion-control
permanent magnet synchronouslinear motor (PMSLM)
robust