期刊文献+

基于学习曲线的CO_2捕集和可再生能源发电成本 被引量:6

Cost of carbon capture and storage and renewable energy generation based on the learning curve method
原文传递
导出
摘要 为研究CO2捕集与封存技术(CCS,carbon captureand storage)和风电、太阳能发电技术未来成本变化,该文利用年限平均法计算了不同技术的发电成本及构成;在对不同发电技术未来装机容量合理假设的基础上,利用学习曲线模型分析了中国光伏和风电技术的学习率,并分析了其未来发电成本的变化以及达到商业化所需要的社会投入成本;在分析CCS电站时,利用自下而上的方法,将捕集电站分解为不同的子系统,考察了其未来的发展。研究结果表明:风电技术为近期首选的减排技术,而光伏发电技术在长期具备竞争力;如果EOR(enhanced oil recovery)技术能够大规模推广,CCS技术也将具备充分的竞争力。 The future costs of carbon capture and storage(CCS) power plants,wind and PV(photovoltaic) plants were estimated using the straight-line method.The analyses use reasonable assumptions about the future capacities of these different power generation technologies and estimate of the learning rates for the PV and wind power systems using the learning curve method to estimate their future costs.This study also uses the bottom-up method to estimate future CCS developments by breaking down the power plants into sub-systems,each of which is assumed to be analogous to those in other power plants.The results show that wind power is the best choice to reduce emissions in the short time with photovoltaics more competitive in the long-term.If enhanced oil recovery can be improved more in the future CCS systems will also be competitive.
作者 尹祥 陈文颖
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第2期243-248,共6页 Journal of Tsinghua University(Science and Technology)
基金 "十一五"国家科技支撑计划项目(2007BAC03A03)
关键词 CO2捕集 光伏 风电 学习曲线 carbon capture photovoltaic(PV) wind power learning curve
  • 相关文献

参考文献3

二级参考文献13

  • 1IEA. Experience Curves for Energy Technology Policy[M]. International Energy Agency, Paris, France .2000.
  • 2Jamasb, T. Technological change theory and learning curves: progress and patterns in energy technologies[J]. EPRG Winter Research Seminar, University of Cambridge. 2006.
  • 3Kahouli-Brahmi, S. Technological learning in energy-environment-economy modelling: A survey[J], energy policy 2008, 36 (1): 138-162 .
  • 4Kouvaritakis, N., Soria, A., Isoard, S., Modelling energy technology dynamics: methodology for adaptative expectations model with learning-by-doing and learning- by-searching[J].International Journal of Global Energy Issues. 2000,14(1-4), 104-115.
  • 5McDonald, A; Schrattenholzer, L, Learning rates for energy technologies[J], energy policy 2001; 29 (4): 255-261.
  • 6Neij, L. Cost dynamics of wind power[J]. Energy. 1999(24), 375-389.
  • 7Neij, L. Cost development of future technologies for power generation - A study based on experience curves and complementary bottom-up assessments[J]; energy policy 2008;36 (6): 2200-2211.
  • 8Soderholm,P., Klaassen,G. Wind power in Europe: a simultaneous innovation-diffusion model[J]. Environmental and resource economics 2007(36),163-190.
  • 9Soderholm, P., Sundqvist, T. Empirical challenges in the use of learning curves for assessing the economic prospects of renewable energy technologies[J]. Renewable energy. 2007.
  • 10Yeh, S; Rubin, ES; A centurial history of technological change and learning curves for pulverized coal-fired utility boilers[J]; energy 2007 ;32( 10): 1996-2005.

共引文献52

同被引文献56

引证文献6

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部