期刊文献+

特征加权最小最大概率机

Feature weighted minimax probability machine
下载PDF
导出
摘要 在最小最大概率机中引入Boosting权值确定方法,构造特征加权最小最大概率机(FWMPM)。利用Boosting方法计算各个特征对分类任务的重要度,把此特征重要度作为原始数据各个特征的权重,对核函数中的内积和欧氏距离进行加权计算,从而可以减轻最小最大概率机被一些弱相关的特征影响。实验结果和理论分析表明,该方法比标准最小最大概率机具有更好的分类性能。 It constructs a Feature Weighted MPM(FWMPM)based on the Boosting.It estimates the relative importance of each feature by computing the Boosted distance.It is also the weight of each feature.It makes use of the weights for computing the inner product and Euclidean distance in kernel functions.In this way the MPM can allay the influence of trivial relevant feature.The experimental results and analysis show that the FWMPM has the better performance of class than the standard MPM.
出处 《计算机工程与应用》 CSCD 2012年第11期102-106,共5页 Computer Engineering and Applications
基金 国家自然科学基金(No.61003120) 中央高校基本科研业务费(No.CDJXS10182216) 重庆市自然基金(No.CSTC2010BB2217)
关键词 最小最大概率机 BOOSTING 信息增益 特征加权 Minimax Probability Machine(MPM) Boosting information gain feature weighting
  • 相关文献

参考文献10

  • 1Huang Kaizhu,Yang Haiqin,King Irwin,et al.Learningclassifiers from imbalanced data based on biased minimaxprobability machine[C]//Proceedings of the 2004 IEEEComputer Society Conference on Computer Vision andPattern Recognition,2004.
  • 2Zhan Yan,Chen Hao,Hang Guochun.An optimizationalgorithm of K-NN classifier[C]//Proceedings of the 5thInternational Conference on Machine Learning and Cy-bernetics,Dalian,China,2006:2246-2251.
  • 3Masnadi-Shirazi H,Vasconcelos N.Cost-sensitive boosting[J].IEEE Transactions on Pattern Analysis and Machine In-telligence,2011,33(2):294-309.
  • 4Naik J,Doyle S,Basavanally A,et al.A boosted distancemetric:application to content based image retrieval andclassification of digitized histopathology[C]//Proc of SPIE,2009.
  • 5Han Jiawei,Kamber M.Data mining:concepts and tech-niques[M].2nd ed.Beijing:China Machine Press,2006:296-300.
  • 6Huang K,Yang H,King I,et al.The minimun error mini-max probability machine[J].Machine Learn Res,2004,5:1253-1286.
  • 7Huang Kaizhu,Yang Haiqin,King Irwin,et al.Imbalancedlearning with a biased minimax probability machine[J].IEEE Transactions on Systems,Man,and Cybernetics-part B:Cybernetics,2006,36(4):913-923.
  • 8Lanckriet G R G,Ghaoui L E I,Bhattacharyya C,et al.Minimax Probability Machine[Z].2002.
  • 9Asuncion A,Newman D J.UCI machine learning repos-itory[EB/OL].http://archive.ics.uci.edu/ml/datasets.html.
  • 10李洁,高新波,焦李成.基于特征加权的模糊聚类新算法[J].电子学报,2006,34(1):89-92. 被引量:114

二级参考文献10

  • 1Zhexue Huang,Michael K Ng.A fuzzy k-modes algorithm for clustering categorical data[J].IEEE Trans on Fuzzy Systems,August,1999,7(4):446-452.
  • 2Zhexue Huang.A fast clustering algorithm to cluster very large categorical data sets in data mining[A].Proceedings of the SIGMOD Workshop on Research Issues on Data Mining and Knowledge Discovery[C].USA:ACM Press,1997.1-8.
  • 3Kononenko I.Estimating attributes:Analysis and extensions of Relief[A].Proceedings of the 7th European Conference on Machine Learning[C].Berlin:Springer,1994.171-182.
  • 4Kira K,Rendell L A.A practical approach to feature selection[A].Proceedings of the 9th International Workshop on Machine Leaning[C].San Francisco,CA:Morgan Kaufmann,1992.249-256.
  • 5Duda R O,Hart P E.Pattern classification and scene analysis[M].New York:John Wiley & Sons,1973.89-91.
  • 6Hathaway R J,Bezdek J C.Nerf C-means:Non-Euclidean relation fuzzy clustering[J].Pattern recognition,1994,27(3):429-437.
  • 7Michalski R S,Stepp R E.Automated construction of classifications:Conceptual clustering versus numerical taxonomy[J].IEEE PAMI,1983,5:396-410.
  • 8Jollois F X,Nadif M.Clustering large categorical data[A].Advances in Knowledge Discovery and Data Mining[C].Heidelberg:Springer-Verlag,2002.257-263.
  • 9何清.模糊聚类分析理论与应用研究进展[J].模糊系统与数学,1998,12(2):89-94. 被引量:113
  • 10李洁,高新波,焦李成.一种基于CSA的混和属性特征大数据集聚类算法[J].电子学报,2004,32(3):357-362. 被引量:9

共引文献113

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部