期刊文献+

一种基于改进k-means的RBF神经网络学习方法 被引量:22

Learning algorithm for RBF neural networks based on improved k-means algorithm
下载PDF
导出
摘要 针对传统RBF神经网络学习算法构造的网络分类精度不高,传统的k-means算法对初始聚类中心的敏感,聚类结果随不同的初始输入而波动。为了解决以上问题,提出一种基于改进k-means的RBF神经网络学习算法。先用减聚类算法优化k-means算法,消除聚类的敏感性,再用优化后的k-means算法构造RBF神经网络。仿真结果表明了该学习算法的实用性和有效性。 Aiming at the low classification accuracy of network trained by traditional RBF neural networks learning algorithm,the traditional k-means algorithm has sensitivity to the initial clustering center.To solve these problems,an improved learning algorithm based on improved k-means algorithm is proposed.The new algorithm optimizes k-means algorithm with subtractive clustering algorithm to eliminate the clustering sensitivity,and constructs RBF neural networks with the optimized k-means algorithm.The simulation results demonstrate the practicability and the effectiveness of the new algorithm.
作者 庞振 徐蔚鸿
出处 《计算机工程与应用》 CSCD 2012年第11期161-163,184,共4页 Computer Engineering and Applications
基金 教育部重点科研基金项目(No.208098) 湖南省教育厅重点项目(No.07A056)
关键词 减聚类算法 K-MEANS算法 径向基函数(RBF)神经网络 梯度下降法 subtractive clustering algorithm k-means algorithm Radial Basis Function(RBF)neural network gradient descent algorithm
  • 相关文献

参考文献5

  • 1Chiu S L.Fuzzy model identification based on clusterestimation[J].Journal of Intelligent and Fuzzy System,1994,2(3):1240-1245.
  • 2Man Chun-tao,Yang Xu,Zhang Li-yong.A new learningalgorithm for RBF neural networks[J].Systems and Con-trol in Aerospace and Astronautics,2008.
  • 3Xie Juanying,Jiang Shuai.A simple and fast algorithmfor global K-means clustering[J].Education Technologyand Computer Science,2010,2:36-40.
  • 4赖玉霞,刘建平.K-means算法的初始聚类中心的优化[J].计算机工程与应用,2008,44(10):147-149. 被引量:75
  • 5UCI repository of machine learning databases[EB/OL].(2002).http://archive.ics.uci.edu/ml/datasets.html.

二级参考文献8

共引文献74

同被引文献229

引证文献22

二级引证文献104

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部