摘要
针对传统RBF神经网络学习算法构造的网络分类精度不高,传统的k-means算法对初始聚类中心的敏感,聚类结果随不同的初始输入而波动。为了解决以上问题,提出一种基于改进k-means的RBF神经网络学习算法。先用减聚类算法优化k-means算法,消除聚类的敏感性,再用优化后的k-means算法构造RBF神经网络。仿真结果表明了该学习算法的实用性和有效性。
Aiming at the low classification accuracy of network trained by traditional RBF neural networks learning algorithm,the traditional k-means algorithm has sensitivity to the initial clustering center.To solve these problems,an improved learning algorithm based on improved k-means algorithm is proposed.The new algorithm optimizes k-means algorithm with subtractive clustering algorithm to eliminate the clustering sensitivity,and constructs RBF neural networks with the optimized k-means algorithm.The simulation results demonstrate the practicability and the effectiveness of the new algorithm.
出处
《计算机工程与应用》
CSCD
2012年第11期161-163,184,共4页
Computer Engineering and Applications
基金
教育部重点科研基金项目(No.208098)
湖南省教育厅重点项目(No.07A056)