期刊文献+

自适应特征提取的光照鲁棒性人脸识别 被引量:3

Adaptive feature extraction for illumination invariant face recognition
下载PDF
导出
摘要 针对光照对人脸特征提取的影响,提出了一种基于多尺度Curvelet变换的自适应局部熵的光照鲁棒性人脸特征提取方法。采用特殊局部对比增强算法对光照不均衡图像进行光照补偿,同时使图像局部特征显著;通过对增强后的图像进行Curvelet多尺度分解,得到的分解系数进行分块求熵从而构成候选特征向量;通过特征鉴别能力分析和评估,对候选特征值进行最优选择。在ORL,Yale,YaleB,AR四个人脸数据库中的实验结果表明,该方法与传统的PCA,LDA方法相比,避免小样本和特征分解问题,同时具有环境适应性和抗光照影响的特点。 An adaptive local entropy feature extraction method based on the multi-resolution Curvelet transform is proposed for face recognition according to illumination.It compensates uneven illumination and makes local details notable through local contrast enhancement.Then the enhanced images are fed into the Curvelet transform.The block entropy of Curvelet coefficients consists of the candidate feature vectors.Feature discrimination power analysis and evaluations can adaptively select the most important features among all candidate features.Experimental results in ORL,Yale,YaleB,and AR face databases,show that the proposed method avoids suffering from the small sample size problem and SVD(Singular Value Decomposition)problem such as PCA and LDA.Meanwhile,it has light resistance and environmental adaptability.
作者 王美 梁久祯
出处 《计算机工程与应用》 CSCD 2012年第11期164-169,共6页 Computer Engineering and Applications
基金 江苏省自然科学基金(No.BK2008098)
关键词 CURVELET变换 分块熵 自适应特征提取 鉴别能力分析 Curvelet transform block entropy adaptive feature extraction discrimination power analysis
  • 相关文献

参考文献8

  • 1周杰,卢春雨,张长水,李衍达.人脸自动识别方法综述[J].电子学报,2000,28(4):102-106. 被引量:156
  • 2Candès E,Donoho D.Curvelets-a surprisingly effectivenonadaptive representation for objects with edges[M]//Curves and surfaces.Nashville,TN:Vanderbilt UniversityPress,2000:105-120.
  • 3Lee Yi-Chun,Chen Chin-Hsing.Face recogntion basedon digital Curvelet transform[C]//Intelligent Systems De-sign and Applications,2008:341-345.
  • 4Kao Wen-Chung,Hsu Ming-Chai,Yang Yueh-Yiing.Lo-cal contrast enhancement and adaptive feature extrac-tion for illumination invariant face recognition[J].Pat-tern Recognition,2010,43:1736-1747.
  • 5Candès E,Demanet L,Donoho D,et al.Fast discrete Curve-let transforms[J].Multiscale Modeling&Simulation,2006,5(3):861-899.
  • 6El Aroussi M,El Hassouni M,Ghouzali S,et al.Blockbased Curvelet feature extraction for face recognition[J].IEEE,2009:299-303.
  • 7Mandal T,Wu Q M J,Yuan Y.Curvelet based face rec-ognition via dimension reduction[J].Signal Processing,2009,89:2345-2353.
  • 8Garcia C,Zikos G,Tziritas G.A wavelet-based frameworkfor face recognition[C]//5th European Conference onComputer Vision(ECCV’98),1998:84-92.

二级参考文献12

  • 1Sung K,IEEE Trans PAMI,1998年,20卷,39页
  • 2Dai Y,Pattern Recognition,1998年,31卷,159页
  • 3Peng H,D Electronics Letters,1997年,33卷,283页
  • 4Zhang J,IEEE Proc,1997年,85卷,1423页
  • 5Lin S,IEEE Trans Neural Networks,1997年,8卷,114页
  • 6Ydeng J,Pattern Recognition,1997年,30卷,403页
  • 7Swets D L,IEEE Trans PAMI,1996年,18卷,831页
  • 8Roder N,Patter Recognition,1996年,29卷,143页
  • 9Lin C C,Pattern Recognition,1996年,29卷,2079页
  • 10Jia X,IEEE Trans PAMI,1995年,17卷,1167页

共引文献155

同被引文献33

  • 1Song Mingli, Tao Dacheng, Liu Zicheng, et al. Image ratio features for facial expression recognition appli- cation[J]. IEEE Transactions on Systems,Man,and Cybernetics. Part B: Cybernetics,2010,40(3) : 779 788.
  • 2Shang Junjun, Ke Yongzhen. An image recognition method using muhi-features [C]// Proceedings of the llth International Symposium on Distributed Computing and Applications to Business, Engineering & Science. Guilin: IEEE,2012: 419-423.
  • 3Zhou Qiangqiang, Zhao Zbenbing. Substation equip- ment image recognition based on SIFT feature matching[C]//Proceedings of 5th International Congress on Image and Signal Processing (CISP). Chongqing: IEEE,2012: 1344-1347.
  • 4Bayramoglu N, Alatan A A. Shape index SIFT: Range image recognition using local features[C]//20th Inter- national Conference on Pattern Recognition(ICPR). Istanbul,Turkey: IEEE,2010: 352-355.
  • 5Doshi N P, Schaefer G. Compact multi-dimensional LBP features for improved texture retrieval[C]// Proceedings of the Second International Conference on Robot, Vision and Signal Processing. Washing- ton,DC,USA: IEEE,2013: 51-55.
  • 6Adini Y, Moses Y, Ullman S. Face recognition : The problem of compen-sating for changes in illumination direction [ J ]. IEEE Transactions onPattern Analysis and Machine Intelligence, 1997,19(7) :721 -732.
  • 7Xie X, Lam K M. An efficient illumination normalization method forface recognition [ J ] . Pattern Recognition Letters,2006,27 (6) : 609-617.
  • 8Phillips P J, Scmggs W T,0 , Toole A J, et al. FRVT 2006 and ICE2006 large-scale results [ R-]. FRVT2006, Evaluation Report,March 2007.
  • 9Ruiz-del-Solar J, Quinteros J. Illumination compensation and normaliza-tion in eigenspace-based face recognition: A comparative study of dif-ferent pre-processing approaches [ J ]. Pattern Recognition Letters,2008,29(14):1966-1979.
  • 10Zhang T,Tang Y,Fang B,et al. Face recognition under varying illumi-nation using Gradientfaces [ J ]. IEEE Transactions on Image Process-ing,2009 ,18(11) :2599 -2606.

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部