期刊文献+

EMD在语音情感识别中的应用与研究

Application and research of EMD in speech emotion recognition
下载PDF
导出
摘要 语音情感计算引起了国内外广泛的关注,特别是在语音情感特征提取方面做了大量的研究。利用经验模态分解(EMD)方法对情感语音进行处理,得到情感语音的前4阶固有模态函数(IMF),并将前4阶IMF分别通过Hilbert变换得到其瞬时频率和瞬时振幅。提取它们的统计特征,再结合情感语音的声学特征共同组成情感特征向量,并对特征向量做归一化处理。利用支持向量机(SVM)对四种情感语音即生气、高兴、悲伤和平静进行识别。实验结果表明该方法的识别效果较好。 In recent years,extensive concern about calculated speech emotion has been aroused at home and abroad.Especially,a lot of studies have been done in speech emotion feature extraction.The Intrinsic Mode Function(IMF)for the first four steps of the emotion speech is attained in this paper by using the method of Empirical Mode Decomposition(EMD)to process the emotion speech.And the instantaneous frequency and amplitude of the Intrinsic Mode Function(IMF)for the first four steps are got by Hilbert transformation respectively.The emotion characteristics vector is composed by extracting their statistical characteristics and combining the acoustic characteristics of emotion speech and characteristics vector is normalized.The four kinds of emotion speech,namely angry,happiness,sadness and calmness are recognized by using the Support Vector Machine(SVM).Experimental results show that the recognition effect of this proposed method is much better.
作者 叶吉祥 庞欢
出处 《计算机工程与应用》 CSCD 2012年第11期214-217,223,共5页 Computer Engineering and Applications
基金 湖南省自然科学基金(No.10JJ2050)
关键词 经验模态分解(EMD) 特征提取 支持向量机(SVM) 情感识别 Empirical Mode Decomposition(EMD) feature extraction Support Vector Machine(SVM) emotion recognition
  • 相关文献

参考文献10

  • 1Lin Y L,Gang W.Speech emotion recognition based on HMM and SVM[C]//Proceedings of the 4th International Conference on Machine Learning and Cybernetics,Guangzhou,2005:18-21.
  • 2Murray I R,Arnott J L.Toward the simulation of emo-tion in synthetic speech:a review of the literature onhuman vocal emotion[J].Journal of the Acoustical Soci-ety of America,1993,93(2):1097-1108.
  • 3Scherer K R.Adding the affective dimension:a newlook in speech analysis and synthesis[C]//Proceedingsof International Conference on Spoken Language Pro-cessing.Philadelphia:IEEE,1996:1808-1811.
  • 4Ling H,Margaret L.Time-frequency feature extractionfrom spectrograms and wavelet packets with applica-tion to automatic stress and emotion classification inspeech[C]//IEEE ICICS,2009.
  • 5赵力,钱向民,邹采荣,吴镇扬.语音信号中的情感特征分析和识别的研究[J].通信学报,2000,21(10):18-24. 被引量:28
  • 6Nicholson J,Takahashi K,Nakatsu R.Emotion recogni-tion in speech using neural networks[J].Neural Comput-ing&Application,2000,9(4):290-296.
  • 7Hozjan V,Kacic Z.Context-independent multilingual emotionrecognition from speech signals[J].International Journalof Speech Technology,2003,6:311-320.
  • 8Huang N E.The empirical mode decomposition and theHilbert spectrum for nonlinear and nonstationary timeseries analysis[J].Proceedings of the Royal Society A,1998:903-995.
  • 9Berlin database of emotional speech[EB/OL].[2010-09-12].http://pascal.kgw.tu-berlin.de/emodb/index-1280.html.
  • 10Li Xin,Li Xiang.Novel Hilbert energy spectrum basedfeatures for speech emotion recognition[C]//WASE In-ternational Conference on Information Engineering,2010:189-193.

二级参考文献7

  • 1钱向民.语音信号中情感特征信息处理的研究[M].南京:南京航空航天大学,2000..
  • 2唐守正.多元统计方法[M].北京:中国林业出版社,1987..
  • 3钱向民,学位论文,2000年
  • 4Zhao L,J Acoustical Society Japan,1997年,53卷,12期,933页
  • 5王学仁,实用多元统计分析,1990年
  • 6唐守正,多元统计方法,1987年
  • 7赵力,钱向民,邹采荣,吴镇扬.从语音信号中提取情感特征的研究[J].数据采集与处理,2000,15(1):120-123. 被引量:12

共引文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部