期刊文献+

多级多特征医学图像检索系统的研究 被引量:1

Multistage and Multi-features Medical Image Retrieval System
下载PDF
导出
摘要 分析了国内外一些典型医学图像检索(CBMIR)系统及其关键技术,包括底层特征提取方法、检索目标以及系统的应用对象等,并对CBMIR系统存在的问题,如可移植性差、二维图像检索的局限性等进行了讨论,提出了多级多特征的CBMIR系统框架。该框架将文本与内容相结合、纹理与形状相结合、全局与ROI相结合、二维图像与三维图像相结合,旨在提高检索准确度,并满足不同用户的检索需求。 Content-based medical image retrieval(CBMIR) has been one of the most vivid research areas in medical image process.This paper attempts to provide a comprehensive survey of the typical CBMIR systems,including low-level image feature extraction,retrieval objective,and application areas,and also discuss some existing deficiencies such as poor portability,limitations of 2D image retrieval and imperfect retrieval performance evaluation methods.Based on these analysis,a multistage and multi-features medical image retrieval system framework has been designed,which not only combines text-based with content-based retrieval,but also integrates local-based ROI features with global image feature,as well as 2D features with 3D features.It aims to improve the accuracy rate of medical image retrieval effectively and meet the needs of different users.
出处 《医疗卫生装备》 CAS 2012年第3期86-88,共3页 Chinese Medical Equipment Journal
基金 国家自然科学基金(60772020 81071220)
关键词 图像检索系统 医学图像 特征提取 多级 多特征 content-based image retrieval system medical image feature extraction multistage multi-features
  • 相关文献

参考文献13

二级参考文献166

共引文献55

同被引文献11

  • 1王勇,吕扬生.基于纹理特征的超声医学图像检索[J].天津大学学报(自然科学与工程技术版),2005,38(1):57-60. 被引量:10
  • 2Henning Muller, Nicolas Michoux, et al. A Review of Con- tent- based Image Retrieval Systems in Medical Applica- tion--clinicaJ benefits and future directions [ J ]. Interna- tional Journal of Medical Informaties, 2004, 73 (1) : 1 - 23.
  • 3Qian x, Tagare H D. Optimal Embedding for Shape Inde- xing in Medical Image Databases [ J]. Medical Image Com- puting and Computer - Assisted Intervention ( MICCAI), 2005, (3750) : 377 -384.
  • 4Lira J, Chevalier J. VisMed: a visual vocabulary approach for medical image indexing and retrieval [ J ]. In Second Asia In- formation Retrieval Symposium, 2005, (3689) : 84 - 96.
  • 5Hsu W, Long LR, Antani S. SPIRS: a framework for con- tent- based image retrieval from large biomedical databases [ J]. Studies in Health Technology and Informatics, 2007, (129) : 188 -192.
  • 6Sharmila G, Saraswathi D, Ramkumar R. A Suevey on Con- tent based Medical Image Retrieval for Mri Brain Images [ J ]. International Journal of Research in Engineering and Technology, 2014, 3 (19): 149-154.
  • 7Chia - Hung Wei, Chang - Tsun Li and Roland Wilson. A Content- Based Approach to Medical Image Database Re- trieval [ C]. Database Technologies : Concepts, Methodolo- gies, Tools, and Applications, 2009 : 1062 - 1083.
  • 8Abdol Hamid Pilevar. CBMIR: Content -based Image Re- trieval Algorithm for Medical Image Databases [ EB/OL ]. [ 2015-01-10 ]. http: //www. ncbi. nlm. nih. gov/pmc/arti- cles/PMC3317765/.
  • 9Alex Krizhevsky and Sutskever, Ilya and Geoffrey E. Hin- ton, ImageNet Classification with Deep Convolutional Neural Networks [ J ]. Advances in Neural Information Processing Systems, 2012, (25) : 1097 - 1105.
  • 10江少锋,陈武凡,冯前进,杨素华.基于模糊区域的CT脑图像检索及关联反馈[J].计算机工程与应用,2008,44(5):199-202. 被引量:4

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部