期刊文献+

Neumann问题基于热平衡积分法的二种解法的比较 被引量:1

A Comparison of Two Heat Balance Integral Method Based Solutions for Neumann Roblem
下载PDF
导出
摘要 运用热平衡积分法(HBIM)和改进的热平衡积分法(RIM)求解了一维两相融化问题,根据精确解比较了2种方法所得融化参数的相对误差.结果表明:在固定温度边界条件下选取二次函数近似时,热平衡积分融化参数的相对误差较小,且随着Stefan数的增加,2种积分结果的误差都在减小(Ste<1). The two - phase refined integral method (RIM). melting problem is solved by using The obtained relative errors of the heat balance integral method (HBIM) and melting constant from the two methods are compared based on the analytical solution. It shows that the melting constant calculated using HBIM is more ac- curate than that of RIM, under the constant temperature boundary condition when using the quadratic function, and the errors of the two methods decrease with increase in the Stefan number( Ste 〈 1 ).
作者 陈叶 令锋
出处 《内蒙古工业大学学报(自然科学版)》 2012年第1期7-11,共5页 Journal of Inner Mongolia University of Technology:Natural Science Edition
基金 广东省自然科学基金资助项目(04011600)
关键词 NEUMANN问题 热平衡积分法 改进的热平衡积分法 Neumann problem heat balance integral method refined integral method
  • 相关文献

参考文献3

二级参考文献30

  • 1Goodman T R. The heat-balance integral and its application to problems involving a change of phase [J]. Trans. ASME Journal of Heat Transfer, 1958,80 : 335 -342.
  • 2Wood A S. A new look at the heat balance integral method [J].Applied Mathematical Modelling. 2001.25: 815 -824.
  • 3Langford D. The Heat Balance Integral Method [J]. Int. J. Heat Mass Transfer, 1973,16 : 2 424-2428.
  • 4Crank J. The mathematics of Diffusion [M]. Oxford: Clarendon Press. 1964. 310- 325.
  • 5Noble B. Heat balance methods in melting problems [A]. Ockendon J R ,Hodgkins W R.eds. Moving Boundary Problems in Heat Flow and Diffusion[C]. Oxford: Clarendon Press,1975,208-209.
  • 6Bell G E. A refinement of the Heat Balance Integral Method applied to a Melting Problem [J] Int. J. Heat Mass Transfer, 1978.21 : 1357-1362.
  • 7Bell G E. Solidification of a Liquid about a Cylindrical Pipe [J]. Int. J. Heat Mass Transfer, 1979,22:1 681-1686.
  • 8Bell G E. Abbas S K. Convergence properties of the heat balance integral method [J]. Numerical Heat Transfer, 1985,8: 373-382.
  • 9Mosally F, Wood A S, AL-Fhaid A. On the convergence of the heat balance integral method [J]. Applied Mathematical Modelling, 2005,29 : 903 -12.
  • 10Goodman T R. The heat-balance integral and its application to problems involving a change of phase[J]. Tran ASMEJ Heat Transfer, 1958, 80:335-342.

共引文献6

同被引文献7

  • 1GOODMANT R.The heat balance integral and its application to problems involving a change of phase[J].Trans ASME Jour- nal of Heat Transfer, 1958,80:335-342.
  • 2LANGORD D.The heat balance integral method[J].Heat Mass Transfer, 1973,16:2 424-2 428.
  • 3SADOUN N,SI-AHMED E.A new analytical expression of the freezing constant in the Stefan problem with initial superheat [Jl.Numer Meth Therm Probl,1995,9:834-854.
  • 4MITCtlELL S L,MYERS T G.Application of heat balance integral methods to one-dimensional phase change problems[J].Re- search Article,2012,10:l 155-1 177.
  • 5MYERS T G.Optimizing the exponent in the heat balance and refined integral methods[J].International Communications in Heat and Mass Transfer,2009,36:143 -147.
  • 6LUNADINI V J. tteat Transfer in Cold Climate[M]. New York: Van Nostrand Reinhold Company, 1981:381-392.
  • 7MITCHELLSL T G, MYERS T G.Improving the accuracy of heat balance integral methods applied to thermal problems with time dependent boundary conditions[J].Int J Heat Mass Transfer, 2010,53:3 540-3 551.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部