期刊文献+

基于改进的GO-PseAA方法的凋亡蛋白亚细胞定位

Using Improved GO-PseAA Predictor to Predict the Subcellular Location of Apoptosis Proteins
下载PDF
导出
摘要 亚细胞定位与蛋白质的功能紧密相关,细胞凋亡蛋白在生物体的发育和平衡状态中起着重要的作用,因此预测凋亡蛋白的亚细胞定位是十分有意义的。本文采用一种融合GO分子功能信息和伪氨基酸组分信息的杂合算法即GO-PseAA方法,来预测凋亡蛋白亚细胞定位。采用与Chen等相同的数据集和Jackknife检验,预测成功率达到了91.4%,结果表明本文采用的改进的GO-PseAA方法是预测凋亡蛋白亚细胞位置的一种很有效的方法。 Apoptosis proteins have a central role in the development and the homeostasis of an organism, and there is a close relationship between the function and the subcellular location of protein, so it is very impor- tant to predict the subcellular location of apoptosis proteins. In this paper, we predict the subcellular location of apoptosis proteins by hybridizing the gene ontology approach and the pseudo -amino acid composition ap- proach. The jackknife is performed on Chens dataset. The overall prediction accuracy reaches 91.4%. The re- sult indicates that using this method to represent protein sample for statistical prediction is indeed very promis- ing and will become a powerful tool in bioinformatics and proteomics.
出处 《内蒙古工业大学学报(自然科学版)》 2012年第1期12-18,共7页 Journal of Inner Mongolia University of Technology:Natural Science Edition
基金 内蒙古自治区高等学校科学研究项目(NJZY08059)
关键词 细胞凋亡蛋白 伪氨基酸组分 GO分子功能 最邻近算法 支持向量机 apoptosis protein pseudo amino acid composition gene ontology nearest neighbor supportvector machine
  • 相关文献

参考文献21

  • 1Jacobson M D,Weil M,Raff M C. Programmed cell death in animal development[J].Cell,1997,(03):347-354.doi:10.1016/S0092-8674(00)81873-5.
  • 2Kaufmann S H,Hengarther M O. Programmed cell death:alive and well in the new millennium[J].Trends in Cell Biology,2001,(12):526-534.
  • 3Zhou G P,Doctor K. Subcellular location prediction of apoptosis proteins[J].Proteins:Structure,Function,and Genetics,2003,(01):44-48.
  • 4Bulashevska A,Eils R. Predicting protein subcellular locations using hierarchical ensemble of Bayesian classifiers based on Markov chains[J].BMC Bioinformatics,2006.298.doi:10.1186/1471-2105-7-298.
  • 5Zhang Z H,Wang Z H,Zhang Z R,Wang Y X. A novel method for apoptosis protein subcellular localization prediction combining encoding based on grouped weight and support vector machine[J].FEBS Letters,2006.6169-6174.
  • 6Chen Y L,Li Q Z. Prediction of apoptosis proteins subcellular location using improved hybrid approach and pseudo-amino acid composition[J].Journal of Theoretical Biology,2007.377-381.
  • 7Ding Y S,Zhang T L. Using Chou's pseudo amino acid composition to predict subcellularlocalization of apoptosis proteins:An approach with immune genetic algorithm-based ensemble classi? Er[J].Pattern Recognition Letters,2008.1887-1892.
  • 8Lin H,Wang H,Ding H,Chen Y L,Li Q Z. Prediction of subcellular localization of apoptosis protein using Chou's pseudo amino acid composition[J].Acta Biotheoretica,.
  • 9Zhang L,Liao B,Li D C,Zhu W. A novel representation for apoptosis protein subcellular localization prediction using support vector machine[J].Journal of Theoretical Biology,2009.361-365.
  • 10Chou K C,Cai Y D. Using GO-PseAA predictor to predict enzyme sub-class[J].Biochemical and Biophysical Research Communications,2004.506-509.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部