期刊文献+

混合有源电力滤波器中无源滤波器多目标优化设计 被引量:2

Multi-Objective Optimal Design for Passive Part of Hybrid Active Power Filter
下载PDF
导出
摘要 对粒子群优化算法进行改进,引入异步时变加速系数和线性时变权重系数,提出一种改进型粒子群优化算法。将无源滤波器的滤波效果、无功补偿容量及初期投资作为优化目标,利用改进型粒子群优化算法对混合有源电力滤波器中无源滤波器参数进行优化设计。仿真验证了理论分析和设计的正确性,相关设计方法可为其它类型的混合有源滤波器中无源滤波器的优化设计提供参考。 An improved particle swarm optimization algorithm is proposed, which the particle swarm optimization algorithm is revised and asynchronous time-varying acceleration coefficients and linear weight coefficients are introduced. It takes the harmonic distortion, capacity of reactive power compensation and the original investment as optimal objectives and uses improved particle swarm optimization algorithm for the design of the PPF parameters of hybrid active power filter. Simulation result verifies the theoretical analysis and the design, and the related design method can provide reference for PPF design of other types of HAPF.
出处 《湖南工业大学学报》 2012年第1期45-49,共5页 Journal of Hunan University of Technology
基金 国家自然科学基金资助项目(51077046) 湖南省教育厅重点科研基金资助项目(09A022) 湖南省自然科学基金资助项目(09JJ6070) 湖南工业大学研究生创新基金资助项目(CX1113)
关键词 优化设计 无源滤波器 改进型粒子群优化算法 optimal design passive power filter improved particle swarm optimization algorithm
  • 相关文献

参考文献12

二级参考文献103

共引文献458

同被引文献17

  • 1唐蕾,陈维荣.有源电力滤波器三种电流检测方法的深入探讨及仿真[J].继电器,2006,34(5):43-48. 被引量:15
  • 2HirofumiAkagi,EdsonHirokazuWatanabe,MauricioAredes.瞬时功率理论及其在电力调节中的应用[M].徐政,译.北京:机械工业出版社,2009:34-92.
  • 3尹春杰.配电网无功补偿与谐波治理关键技术及其应用研究[D].济南:山东大学,2011.
  • 4Zobaa A F. Optimal multi-objective design of hybrid ac- tive power filters considering a distorted environment [J]. IEEE Trans. Industrial Electronics, 2013, 61(1): 107-114.
  • 5Elmathana M T, Zobaa A F, Abdel Aleem S H E. Eco- nomical design of multiple-arm passive harmonic filters for an industrial firm-Case study: IEEE 15th internation- al conference on harmonics and quality of power [C]. Hong Kong: IEEE, 2012: 438-444.
  • 6姬军鹏.SVC系统滤波器的设计及分析[D].西安:西安理工大学,2009.
  • 7Hashemi A B. A note on the learning automata based al- gorithms for adaptive parameter selection in PSO[J].Applied Soft Computing Journal, 2011, 11 ( 1 ): 689-705.
  • 8Tsujimoto T, Shindo T, Kimura T, et al. A relation- ship between network topology and search performance of PSO: IEEE congress on evolutionary computation , QLD: IEEE[C]. Brisbane, 2012: 1-6.
  • 9Rakhshani E, Cantarellas A M, Remon D, et al. PSO- based LQR controller for multi modular converters: IEEE ammal international on energy conversion con- gress and exhibition, VIC: IEEE [C]. Melbourne, 2013: 1023-1027.
  • 10Ling Haifeng, Xiao Yihong, Zhou Xianzhong, et al. An improved PSO algorithm for constrained multi ob- jective optimization problems: international conference on computer science and service system[C]. Nanjing China: IEEE, 2011: 3859-3863.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部