摘要
本文从函数逼近观点研究线性和非线性系统辨识问题 ,导出辨识方程 ,提出用神经网络建立线性和非线性系统的模型 .根据函数内差逼近原理建立神经网络学习方程 ,给出优化算法 .计算机仿真表明新算法计算速度快 ,具有良好的推广。
This paper was a research on the identification of linear and nonlinear systems on basis of function approximation. The identification equation was given. The neural network model of systems have been proposed. The optimal learning algorithm for neural network was constructed. Computer simulation shows that the new algorithm has better approximation, generalization and convergence property.
出处
《信息与控制》
CSCD
北大核心
2000年第2期131-138,共8页
Information and Control
基金
陕西省工业自动化重点实验室资助
关键词
系统辨识
系统建模
最优算法
函数逼近
system identification, system modeling, optimal algorithm