期刊文献+

弹性波在含双裂纹岩体中的传播分析 被引量:8

Analysis of propagation of elastic wave in rocks with double-crack model
下载PDF
导出
摘要 岩石和岩体是具有复杂细微观结构的非均匀介质.弹性波在岩体中传播时,与岩体细微观缺陷相互作用表现出弹性波的频散效应.为研究岩体内部细观结构对弹性波频散效应的作用,本文采用双裂纹模型:在模型内部,考虑裂纹间的相互作用对弹性波的影响,以分析弹性波在双裂纹体系间的多次散射作用;在双裂纹体系间,采用线性叠加分析法,以考虑岩体缺陷影响的局部化.对波动方程应用Green函数基本解,利用边界积分方法,将双裂纹体系作为内边界处理,得到相应的频散方程,由此对比分析了双裂纹体系在上述两种分析方法下的区别,进一步探讨了双裂纹体系参数、孔隙流体压力和卸荷对岩体频散特性的影响. Rock and rock mass are non-homogeneous medium with complex micro-and meso-scopic structures.Dispersion effect results from the interaction between the elastic wave and these micro and meso defects in rocks.A double-crack model is proposed to study the effect of microscopic structures on the dispersion of elastic wave.In the model,the interaction between these two cracks is accounted for to partly consider the effect of multiple scattering.Among these double-crack systems,linear superposition method is adopted to analyze the localization effect of defects in rocks.Specifically,based on the fundamental solution of Green function to wave propagation equation,and combined with the boundary integral method,cracks are treated as inner boundaries and the dispersion equation is obtained.Furthermore,the difference between these two ways of interaction of cracks is analyzed,and the influence of the micro discontinuity parameters of the double-crack system,pore fluid pressure and unloading on the dispersion of rocks is discussed.
出处 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2012年第3期944-952,共9页 Chinese Journal of Geophysics
基金 国家自然科学基金(40874093) 高等学校博士学科点专项科研基金(20113402110008)资助
关键词 岩体 弹性谐波 频散效应 双裂纹体系 Green函数解 Rock mass Elastic harmonic wave Dispersion effect Double-crack model Green function solution
  • 相关文献

参考文献20

  • 1Ying C F, Truell R. Scattering of a plane longitudinal wave by a spherical obstacle in an isotropically elastic solid. J. Appl. Phys., 1956, 27(9): 1086-1097.
  • 2Nagase M. Diffraction of elastic waves by a spherical surface. J. Phys. Soc. Jpn. , 1956, 11(3): 279 301.
  • 3Knopoff L. Scattering of compression waves by spherical obstacles. Geophysics, 1959, 24(1): 30.
  • 4Tan T H. Diffraction of time harmonic elastic waves by a cylindrical obstacle. Appl. Sci. Res., 1976, 32(2): 97-144.
  • 5Wang X M, Ying C F, Li M X. Scattering of antiplane shear waves by a circular cylinder in a traction-free plate. J. Acoust. Soc. Am. , 2000, 108(3): 913- 923.
  • 6Bhutani O P, Gupta N. Variational principle for linear initial value problems. International Journal of Engineering Science, 1982, 20(12): 1303 -1309.
  • 7Sandhu R S, Pister K S. Variational principles for boundary value and initial boundary value problems in continuum mechanics. Int. J. Solids Struct. , 1971, 7(7): 639-654.
  • 8Datta S K, Shah A H. Scattering of SH waves by embedded cavities. Wave Motion, 1982, 4(3): 265 -283.
  • 9Hudson J A. Wave speeds and attenuation of elastic waves in material containing cracks. Geophysics. J. R Astr. Soc., 1981, 64(1): 133- 150.
  • 10Hudson J A. Overall elastic properties of isotropic materials with arbitrary distribution of circular cracks. Geophys. J. Int. , 1990, 102(2): 465-469.

二级参考文献27

  • 1SPENCER J W.Stress relaxation at low frequencies in fluid-saturated rock attenuation and modulus dispersion[J].Journal of Geophysical Research,1981,86(B3):1 803-1 812.
  • 2NUR A,JONES T D.Velocity and attenuation in sandstone at elevated temperatures and pressures[J].Geophysical Research Letters,1983,10(2):140-143.
  • 3MURPHY W F,WINKLER K W,KLEINBERG R L.Acoustic relaxation in sedimentary rocks:dependence on grain cantacts and fluid saturation[J].Geophysics,1986,15(3):757-766.
  • 4BATZLE M,WANG Z.Seismic properties of pore fluids[J].Geophysics,1992,57(11):1 396-1 408.
  • 5PEETS T,RANDRUUT M,ENGELBRECHT J.On modelling dispersion in microstructured solids[J].Wave Motion,2008,45(4):471-480.
  • 6HASHEMINEJAD S M,AVAZMOHAMMADI R.Harmonic wave diffraction by two circular cavities in a poroelastic formation[J].Soil Dynamics and Earthquake Engineering,2007,27(1):29-41.
  • 7BIOT M A.Theory of propagation of elastic waves in a fluid-saturated porous solid:I.low-frequency range;II.high-frequency range[J].The Journal of the Acoustical Society of America,1956,28(2):168-178,179-191.
  • 8HUDSON J A.Wave speeds and attenuation of elastic waves in material containing cracks[J].Geophysical Journal of the Royal Astronomical Society,1981,64:133-150.
  • 9FOLDY L L.The multiple scattering of waves[J].Physical Review,1945,67(34):107-119.
  • 10YING C F,TRUELL R.Scattering of a plane longitudinal wave by a spherical obstacle in an isotropically elastic solid[J].Applied Physics,1956,27(9):1 086-1 097.

共引文献24

同被引文献99

引证文献8

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部