期刊文献+

Fluid-solid coupling numerical simulation of charge process in variable-mass thermodynamic system 被引量:8

Fluid-solid coupling numerical simulation of charge process in variable-mass thermodynamic system
下载PDF
导出
摘要 A joint solution model of variable-mass flow in two-phase region and fluid-solid coupling heat transfer,concerned about the charge process of variable-mass thermodynamic system,is built up and calculated by the finite element method(FEM).The results are basically consistent with relative experimental data.The calculated average heat transfer coefficient reaches 1.7×105 W/(m2·K).When the equal percentage valve is used,the system needs the minimum requirements of valve control,but brings the highest construction cost.With the decrease of initial steam pressure,the heat transfer intensity also weakens but the steam flow increases.With the initial water filling coefficient increasing or the temperature of steam supply decreasing,the amount of accumulative steam flow increases with the growth of steam pressure.When the pressure of steam supply drops,the steam flow gradient increases during the maximum opening period of control valve,and causes the maximum steam flow to increase. Abstract: A joint solution model of variabk:-mass flow in two-phase region and fluid-solid coupling heat transfer, concerned about the charge process of variable-mass thermodynamic system, is built up and calculated by the finite element method (FEM). The results are basically consistent with relative experimental data. The calculated average heat transfer coefficient reaches 1.7~105 W/(m2. K). When the equal percentage valve is used, the system needs the minimum requirements of valve control, but brings the highest construction cost. With the: decrease of initial steam pressure, the heat transfer intensity also weakens but the steam flow increases. With the initial water filling coefficient increasing or the temperature of steam supply decreasing, the amount of accumulative steam flow increases with the growth of steam pressure. When the pressure of steam supply drops, the steam flow gradient increases during the maximum opening period of control valve, and causes the maximum steam flow to increase.
出处 《Journal of Central South University》 SCIE EI CAS 2012年第4期1063-1072,共10页 中南大学学报(英文版)
基金 Project(20080431380) supported by China Postdoctoral Science Foundation
关键词 热力学系统 充电过程 变质量 数值模拟 流固耦合 蒸汽流量 平均传热系数 蒸汽供应 steam accumulator variable-mass control valve fluid-solid coupling numerical simulation
  • 相关文献

参考文献3

二级参考文献11

共引文献67

同被引文献50

引证文献8

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部