期刊文献+

一种用于图像重构的新型贝叶斯压缩感知技术 被引量:4

A new Bayesian compressive sensing of high accuracy
下载PDF
导出
摘要 近几年来,贝叶斯压缩感知(BCS)技术得到了快速的发展并逐渐成为压缩感知领域的一项主流技术。该技术主要针对压缩感知中的重构部分,与传统的重构算法不同,其应用的是贝叶斯概率模型,而不是传统的1范数最小化模型。BCS的核心是相关向量机(RVM),但是,应用传统的RVM进行信号重构往往精度非常差。为了提高精度,文中提出了一种新的BCS技术:粒子群贝叶斯压缩感知(PSBCS)。实验表明这种新的BCS技术在重构精度上大大超越了传统的BCS技术。 A new reconstruction metric for compressive sensing technique called the Bayesian compressive sensing(BCS) was proposed in the recent years.It considers the reconstruction process as the Bayesian model rather than the traditional l1 norm sparsity model.In BCS,the so called the relevance vector machine(RVM) is used,which have better performance than the l1 norm sparsity model.However,the accuracy of the conventional BCS is very low,which means its performance is highly dependent on the signal.To enhance accuracy of the conventional BCS,a new kind of modified BCS named the particle swarm Bayesian compressive sensing(PSBCS) is proposed in this paper.The experiments show that the PSBCS outperforms the conventional BCS and other reconstruction metrics for its high accuracy on signal reconstruction.
作者 吴昊 朱杰
出处 《信息技术》 2012年第3期98-100,104,共4页 Information Technology
关键词 贝叶斯压缩感知(BCS) 相关向量机(RVM) 粒子群优化 局部最优困境 向量选取方案 Bayesian compressive sensing relevance vector machine particle swarm optimization greedy-trapped scenario vector selection scheme.
  • 相关文献

参考文献10

  • 1Baraniuk R. Compressive Sensing[J].Lecture Notes in IEEE Signal Processing Magazine,2007,(4).doi:10.1109/MSP.2007.4286571.
  • 2Donoho D L. Compressed Sensing[J].IEEE Transactions on Information theory,2006,(04):1289-1306.doi:10.1109/TIT.2006.871582.
  • 3Chen S S,Donoho D L,Saunders M A. Atomic Decomposition by Basis Pursuit[J].SIAM Review,.
  • 4Huggins P S,Zucker S W. Greedy Basis Pursuit[J].IEEE Transactions on Signal Processing,2007,(07):3760-3772.
  • 5Ji S,Xue Y,Carin L. Bayesian Compressive Sensing[J].IEEE Transactions on Signal Processing,2008,(06):2346-2356.
  • 6Tipping M E,Faul A C. Fast Marginal Likelihood Maximisation for Sparse Bayesian Models[A].Key West,FL,.
  • 7Baron D,Sarvotham S,Baraniuk R G. Bayesian Compressive Sensing via Belief Propagation[J].IEEE Transactions on Signal Processing,2010,(01):269-280.
  • 8Babacan S D,Molina R,Katsaggelos A K. Bayesian Compressive Sensing Using Laplace Priors[J].IEEE Transactions on Image Processing,2010,(01):53-63.
  • 9Sainath T N,Carmi A,Kanevsky D. Bayesian Compressive Sensing for Phonetic Classification[A].2010.
  • 10Wu H,Geng J,Jin R. An Improved Comprehensive Learning Particle Swarm Optimization and Its Application to The Semiautomatic Design ofAntennas[J].IEEE Trans on Antennaand Propagation,2009,(10).

同被引文献19

  • 1何岩,王东辉,朱淼良.贝叶斯压缩感知稀疏信号重构方法研究[J].华中科技大学学报(自然科学版),2011,39(S2):172-175. 被引量:4
  • 2Donoho D L. Comprised Sensing[J] . IEEE Transactions on Infor-mation Theory, 2006 , 52(4) :1289 -1306.
  • 3Emmanuel Candes, Justin Romberg. Sparsity and incoherence incompressive sampling[J]. Inverse IVoblem, 2007, 23(3) :969 -985.
  • 4Tropp J A, Gilbert A C. Signal recovery from random measurementsvia orthogonal matching pursuit[J]. IEEE Transactions on Informa-tion theory, 2007,52( 12) :4655 - 4666.
  • 5Oguzhan Teke, Ali Cafer Guibuz, Orfian Arlkan. A New OMPTechnique For Sparse Recovery [ C]. Signal Processing and Commu-nications Applications Conference (SIU), 2012:1 -4.
  • 6Xiao Xiang Zhu, Richard Bamler. Tomographic SAR Inversion by-Norm Regularization一The Compressive Sensing Approach[ J].IEEE Transaction on Geoscience and remote sen sing, 2010,48(10): 3839 - 3846.
  • 7Emmanuel J Candfes, Justin Romberg, Terence Tao. Robust Un-certainty Principles : Exact Signal Reconstruction From Highly In-complete Frequency Information [ J ]. IEEE Transactions on Infor-mation Theory, 2006 , 52(2) :489 - 499.
  • 8芮国胜,王林,田文飚.一种基于基追踪压缩感知信号重构的改进算法[J].电子测量技术,2010,33(4):38-41. 被引量:23
  • 9刘哲,杨扬.一种新的基于压缩感知理论的稀疏信号重构算法[J].光电子.激光,2011,22(2):292-296. 被引量:15
  • 10李蕴华.压缩感知框架下基于ROMP算法的图像精确重构[J].计算机应用,2011,31(10):2714-2716. 被引量:9

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部