期刊文献+

一类半环上的行列式保持问题研究

Research on determinant preserver over a class of semiring
下载PDF
导出
摘要 设R为非负交换整半环,用Mn(R)表示R上所有n×n矩阵构成的矩阵半环。在非负交换整半环上的矩阵半环Mn(R)上分别刻画保持正行列式、负行列式、积和式的线性算子形式,丰富半环上线性保持问题的成果。 Suppose is nonnegative commutative semiring without zero divisors, let be the matrix semiring of all matrices over. The forms of the linear transformation on which preserve positive determinant,negative determinant, permanent are characterized in this paper. The conclusion enriches the results of linear preserver problems on semiring.
出处 《黑龙江工程学院学报》 CAS 2012年第1期78-80,共3页 Journal of Heilongjiang Institute of Technology
基金 黑龙江省教育厅科学技术研究项目(12511457)
关键词 交换半环 正行列式 负行列式 积和式 保持 commutative semiring positive determinant negative determinant permanent preserve
  • 相关文献

参考文献7

  • 1C.K.Li,S.Pierce. Linear preserver problems[J].American Mathematical Monthly,2001.591-605.
  • 2G.Dolinar,P.Semrl. Determinant preserving maps on matrix algebras[J].Linear Algebra and Its Applications,2002.189-192.
  • 3V.Tan,F.Wang. On determinant preserver problems[J].Linear Algebra and Its Applications,2003.311-317.
  • 4C.G.Cao,X.M.Tang. Determinant preserving transformations on symmetric matrix spaces[J].Electronic Journal of Linear Algebra,2004.205-211.
  • 5P.Poplin,R.Hartwig. Determinantal identities over commutative semirings[J].Linear Algebra and Its Applications,2004.99-132.
  • 6L B.Beasley,A.E.Guterman,S.G.Lee,S.Z.Song. Frobenius and dieudonne theorems over semirings[J].Linear and Multilinear Algebra,2007,(01):19-34.
  • 7谢源,谭宜家.关于正行列式的一个公开问题[J].福州大学学报(自然科学版),2009,37(3):305-307. 被引量:5

二级参考文献3

  • 1谢源,谭宜家.非负半环上的积和式半群[J].福州大学学报(自然科学版),2007,35(1):1-5. 被引量:1
  • 2Golan J S.Semirings and their applications[M].New York:Kluwer Academic Publishers,1999.
  • 3Poplin P L,Hartwig R E.Determinantal identities over commutative semirings[J].Linear Algebra and its Appl,2004(387):99-132.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部