期刊文献+

一种融合光流的分通道帧差目标检测方法

An Object Detection Method Based on Channel Differencing Combined with Optical Flow
下载PDF
导出
摘要 针对目前方法在复杂环境下很难有效检测出运动目标的问题,提出了融合光流的分通道帧差目标检测方法。首先通过降噪和平滑预处理工作增强有效信息,然后使用实时分通道图像差分精确检测运动目标,最终融合光流检测信息,以运动信息修正检测误差,很好的逼近真实目标。在检测算法中使用数学形态学方法去除噪声和斑点以提高检测效果。实验结果证明,该算法能对运动目标快速而准确的检测。 In view of moving object detection is satisfactory with traditional methods in complex environment,an object detection method based on channel differencing combined with optical flow was proposed in this paper.Firstly,pre-processing including noise reduction and smoothing was introduced to enhance the useful information.Then the moving object was accurately detected and extracted by real-time channel-difference.Lastly,the proposed method combined with optical flow can detect true target and correct detection error by movement information.To improve the effect of detection,mathematical morphology was incorporated into the proposed method to wipe off noise and strain.The experiments show that this method can detect moving objects in image sequence quickly and accurately.
出处 《弹箭与制导学报》 CSCD 北大核心 2012年第1期175-178,184,共5页 Journal of Projectiles,Rockets,Missiles and Guidance
基金 教育部新世纪优秀人才计划项目(NCET-06-0487) 国家自然科学基金(60973094 60572034 90820002 61070121) 江苏省自然科学基金(BK2006081) 江南大学创新团队研究计划项目(JNIRT0702)资助
关键词 运动目标检测 色彩通道 分通道帧差 数学形态学 光流 moving object detection color channel channel differencing mathematical morphology optical flow
  • 相关文献

参考文献5

二级参考文献37

  • 1刘翔.基于光流场算法的运动估计方法研究[J].无线电工程,2006,36(4):17-20. 被引量:6
  • 2Mohan A, Papageorgiou C, Poggio T. Example-based object detection in images by components. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(4): 349-361.
  • 3Ramoser H, Schlogl T, Beleznai C, Winter M, Bischof H. Shape-based detection of humans for video surveillance applications. In: Proceedings of the International Conference on Image Processing. 2003. 1013-1016.
  • 4Gavrila D M, Giebel J. Shape-based pedestrian detection and tracking. IEEE Intelligent Vehicle Symposium. 2002. 8-14.
  • 5Bertozzi M, Broggi A, Chapuis R. Shape-based pedestrian detection and localization. IEEE Intelligent Transportation Systems, 2003, 1:328-333.
  • 6Sabzmeydani P, Mori G. Detecting pedestrians by learning shapelet features. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, USA: IEEE, 2007.
  • 7Wu B, Nevatia R. Detection and segmentation of multiple, partially occluded objects by grouping, merging, assigning part detection responses. International Journal of Computer Vision, 2009, 82(2): 185-204.
  • 8Dalai N, Triggs B. Histograms of oriented gradients for human detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. San Diego, USA: IEEE, 2005. 886-893.
  • 9Leibe B, Seemann E, Schiele B. Pedestrian detection in crowded scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. San Diego, USA: IEEE, 2005. 878-885.
  • 10Lowe D G. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004, 60(2): 91-110.

共引文献209

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部