期刊文献+

a尺度多小波正交尺度函数及其mallat算法 被引量:2

Orthogonal Multiscaling Function and Mallat Algorithm with Dilation Factor a
下载PDF
导出
摘要 多小波解决了单小波不可能同时具有正交性、紧支性和对称性的困难,更具有研究的价值.在正交多小波理论的基础上,利用两尺度矩阵研究了一种特殊的紧支撑尺度函数构造成正交尺度函数的方法以及a尺度正交多小波mallat算法,得出了相应的分解和重构关系. Because multiwavelet solves the problem which single wavelet can not have orthogonality, compact support and symmetry simultaneously, as a result, multiwavelet has more value worth being studied. On the basis of orthogonal multiwavelet theory, by using two-scaling matrix, this paper studies orthogonal scaling function constructed by a special compact support scaling function and orthogonal multiwavelet Mallat algorithm with dilation factor a and obtains corresponding decomposition and reconstruction relation.
出处 《重庆工商大学学报(自然科学版)》 2012年第3期46-50,共5页 Journal of Chongqing Technology and Business University:Natural Science Edition
关键词 多小波 正交性 尺度函数 分解重构 muhiwavelet orthogonality scaling function decomposition and reconstruction
  • 相关文献

参考文献5

二级参考文献29

  • 1程正兴.具有矩阵的小波包[J].工程数学学报,1994,11(1):15-28. 被引量:10
  • 2GERNONIMO J,HARDIN D P,.MASSOPUST P.Fractal Functions and Wavelet Expansions Based in Several Scaling Function[J].J.Approx.Theory,1994,78:373-401.
  • 3JIANG Q.Orthogonal Multiwavelets with Optimum Time-Frequency Resolution[J].IEEE Trans on Signal Processing,1998,46:3292-3303.
  • 4JIANG Q.Symmetric Paraunitary Matrix Extension and Parametrization of Symmetric Orthogonal Multifilter Banks[J].SIAM J Matrix Anal.Appl,2001,23(I):16-186.
  • 5DAUBECHIES I.Ten Lectures on Wavelets[M].Society for Industrial and Applied Math,Philadelphia,1992.
  • 6[1]Donovan G C,Geronimo J,Hardin D P.Construction of orthogonal wavelets using fractal interpolation functions [J].SIAM J Math Anal,1996,27:1 158~1 192.
  • 7[2]Lawton W,Lee S L,Shen Z W.An algorithm for matrix extension and wavelet construction[J].Math Comp,1996,65:723~737.
  • 8[3]Strang G,Strela V.Short wavelets and matrix dilation equations[J].IEEE Trans Signal Process,1995,43:108~115.
  • 9[4]Hardin D P,Marasovich J A.Orthogonal multiwavelets on [-1,1][J].Appl Comp Harm Anal,1999,7:34~53.
  • 10Daubechies I. Ten Lecture on Wavelets. CBMS-NSF Regional Series in Applied Math 61, Philadelphia: SIAM,1992.

共引文献30

同被引文献24

引证文献2

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部