摘要
多小波解决了单小波不可能同时具有正交性、紧支性和对称性的困难,更具有研究的价值.在正交多小波理论的基础上,利用两尺度矩阵研究了一种特殊的紧支撑尺度函数构造成正交尺度函数的方法以及a尺度正交多小波mallat算法,得出了相应的分解和重构关系.
Because multiwavelet solves the problem which single wavelet can not have orthogonality, compact support and symmetry simultaneously, as a result, multiwavelet has more value worth being studied. On the basis of orthogonal multiwavelet theory, by using two-scaling matrix, this paper studies orthogonal scaling function constructed by a special compact support scaling function and orthogonal multiwavelet Mallat algorithm with dilation factor a and obtains corresponding decomposition and reconstruction relation.
出处
《重庆工商大学学报(自然科学版)》
2012年第3期46-50,共5页
Journal of Chongqing Technology and Business University:Natural Science Edition
关键词
多小波
正交性
尺度函数
分解重构
muhiwavelet
orthogonality
scaling function
decomposition and reconstruction