期刊文献+

橡胶树胶乳HbPLDα1基因及其启动子的克隆与生物信息学分析 被引量:3

Cloning and Bioinformatical Analysis of Phospholipase Dα1 Gene and Its Promoter in the Latex of Rubber Tree(Hevea brasiliensis Muell.Arg.)
下载PDF
导出
摘要 植物磷脂酶PLDα1与伤害信号转导密切相关,是伤害诱导内源茉莉酸(Jasmonic acid,JA)生物合成的关键酶之一。橡胶树胶乳PLDα1基因(HbPLDα1)表达的研究将有助于揭示橡胶树乳管细胞JA信号转导及其调控橡胶生物合成的机制。在EST序列的基础上,通过RACE和Genome Walking方法分别克隆了橡胶树胶乳的HbPLDα1基因及其启动子序列。HbPLDα1基因的cDNA全长为2 870 bp,包含长度为2 427 bp的完整开放阅读框(ORF),具有典型的植物PLDα蛋白保守功能域,与同属大戟科的蓖麻和麻风树的PLDα1基因亲缘关系最近。HbPLDα1基因启动子区域长为1 559 bp,除含有TATA box和CAAT box等基本顺式作用元件外,还存在JA和脱落酸等激素响应元件以及干旱胁迫等环境信号响应元件,这表明HbPLDα1基因的表达可能受激素和环境信号的调控,在橡胶树乳管细胞对激素和环境信号的响应过程中发挥重要作用。 Phospholipase D alpha 1(PLDα1) is involved in wound signal transduction in plant cells,and is a key component for wound-induced jasmonic acid(JA) production.The investigation of PLDα1 expression would facilitate unraveling the signaling pathway of JA and its regulation of the rubber biosynthesis in Hevea brasiliensis(rubber tree).The PLDα1 gene from the Hevea latex,HbPLDα1,and its promoter were cloned based on the EST sequences using RACE and Genome Walking.The full-length cDNA of HbPLDα1 gene was 2 870 bp with a complete ORF of 2 427 bp.HbPLDα1 had the similar typical conserved domains of plant PLD with those of other plants,and showed the highest identity with those of PLDα1 from Ricinus communis and Jatropha curcas.The promoter of HbPLDα1 was 1 559 bp long,including not only the ordinary cis-acting elements of TATA and CAAT box,but also such cis-acting elements responsive to phytohormones(JA,ABA,GB) and environmental stresses.The data demonstrated that the expressed of HbPLDα1 gene could be regulated by signals of both plant hormones and environmental stresses,and it’s suggested that HbPLDα1 might play key roles in the responses to hormone stimulation and environmental stresses for rubber trees.
出处 《热带作物学报》 CSCD 北大核心 2012年第1期63-69,共7页 Chinese Journal of Tropical Crops
基金 国家自然科学基金项目"橡胶树响应茉莉酸信号橡胶粒子膜蛋白的鉴定与功能研究"(No.30860232) 国家重点基础研究(973前期)项目"橡胶树橡胶生物合成细胞器:橡胶粒子的蛋白质组学研究"(No.2007CB116203)
关键词 巴西橡胶树 胶乳 HbPLDα1基因 启动子 生物信息学分析 Hevea brasiliensis; Latex; HbPLDα1; Promoter; Bioinformatical analysis
  • 相关文献

参考文献22

  • 1Liscovitch M,Czarny M,Fiucci G. Phosphlipase D:molecular and cell biology of a novel gene family[J].Biochemical Journal,2000.401-415.doi:10.1016/j.ejcts.2010.01.041.
  • 2Zhang W H,Yu L J,Zhang Y Y. Phospholipase D in the signaling networks of plant response to abscisic acid and reactive oxygen species[J].Biochimica Et Biophysica Acta,2005.1-9.doi:10.1039/c1dt11844g.
  • 3闫旭宇,李玉中,李玲,赵鹏.植物中的磷脂酶D信号转导[J].植物生理学通讯,2006,42(6):1183-1189. 被引量:10
  • 4Wang C,Zien C A,Afitlhile M. Involvement of phospholipase Din wound-induced accumulation of jasmonic acid in Arabidopsis[J].Plant Cell,2000.2237-2246.
  • 5Hyun Y,Lee I. Generating and maintaining jasmonic acid in Arabidopsis[J].Plant Signal Behav,2008.798-800.doi:10.4161/psb.3.10.5875.
  • 6Fits L V D,Memelink J. ORCA3,a jasmonate-responsive transcriptional regulator of plat primary and secondary metabolism[J].Science,2000.295-297.
  • 7Devoto A,Ellis C,Magusin A. Expression profiling reveals CO(ll) to be a key regulator of genes involved in wound-and methyl jasmonate-induced secondary metabolism,defence,and hormone interactions[J].Plant Molecular Biology,2005.497-513.doi:10.1007/s11103-005-7306-5.
  • 8Kush A. Isoprenoid biosynthesis:the Hevea factory[J].Plant Physiology and Biochemistry,1994.761-767.
  • 9Hao B Z,Wu J L. Laticifer differentiation in Hevea brasiliensis:Induction by exogenous jasmonic acid and linolenic acid[J].Annals of Botany,2000.37-43.
  • 10曾日中,段翠芳,黎瑜,郝秉中.茉莉酸刺激的橡胶树胶乳cDNA消减文库的构建及其序列分析[J].热带作物学报,2003,24(3):1-6. 被引量:50

二级参考文献57

  • 1王瑞霞,高庆荣,崔德才,化斌.PLD基因的基本功能及在植物中的利用研究现状[J].西北植物学报,2004,24(8):1537-1542. 被引量:5
  • 2郑风荣,谷令坤,李德全.水分胁迫下脱落酸及磷脂酶在玉米幼苗根系渗透调节物质积累中的信号作用[J].中国生态农业学报,2004,12(4):78-81. 被引量:10
  • 3张春晓,王文棋,蒋湘宁,陈雪梅.植物基因启动子研究进展[J].Acta Genetica Sinica,2004,31(12):1455-1464. 被引量:81
  • 4张充,蒋继志,廖祥儒,彭亮,安秀娟,杨磊.植物中的磷脂酶D[J].植物生理学通讯,2005,41(5):691-697. 被引量:12
  • 5Backhaus RA. Rubber formation in plants -a mini-review. Israel J Bot, 1985, 34:283-293.
  • 6Bealing IJ. Carbohydrate metabolism in Hevea latex-availability and utilization of substrates. J Rubber Res Inst Malays, 1969,21: 445.
  • 7Oh S K, Kang H, Shin D H, et al. Isolation, Characterization, and Functional Analysis of a Novel eDNA Clone Encoding a Small Rubber Particle Protein from Hevea Brasiliensis. J.Biol.Chem,1999, 274: 17132-17138.
  • 8d'Auzac J, Jacob JL, Prevot J C, et al. The regulation of cis-polyisoprene production (natural rubber)from Hevea Brasiliensis. Recent Res. Plant physiol,1997,1: 273-331.
  • 9Jillian Collins, Huma Taban,, David Shintani. The role of the Small Rubber Particle Protein in determining rubber yields and polymer length.//2007AAIC Annual Meeting: Bringing Industrial Crops into the Future, 2007: 7-10.
  • 10Dennis M S, Henzel W J, Bell J, et al. Amino acid sequence of rubber elongation factor protein associated with rubber particles in Hevea latex. J Biol Chem, 1989, 264:18618-18626.

共引文献65

同被引文献46

  • 1杨晓玲,郭守华,杨晴,东方阳,王华方.转BADH基因水稻幼苗抗旱性研究[J].华北农学报,2007,22(3):60-64. 被引量:7
  • 2Abe H., Yamaguchi-Shinozaki K., Urao T., Iwasaki T., Hosokawa D., and Shinozaki K., 1997, Role of Arabidopsis MYC and MYB homologs in drought-and abscisic acid-regulated gene expression, The Plant Cell, 9(10): 1859-1868.
  • 3An Z.W., Wang Q.T., Hu Y.S., Zhao Y.H., Li Y.C., Cheng H.,and Huang H.S., 2012, Co-extraction of high-quality RNA and DNA from rubber tree (Hevea brasiliensis), Aft. J. Biotechnol., 11(39): 9308-9314.
  • 4Cheng X.F., Peng J.L., Ma J.Y., Tang Y.H., Chen R.J., Mysore K.S., and Wen J., 2012, NO APICAL MERISTEM (MtNAM) regulates floral organ identity and lateral organ separation in Medicago truncatula, New Phytol., 195(1): 71-84.
  • 5Eulgem T., Rushton P.J., Robatzek S., and Somssich I.E., 2000, The WRKY superfamily of plant transcription factors, Trends Plant Sci., 5(5): 199-206.
  • 6Fang Y.J., You J., Xie K.B., Xie W.B., and Xiong L.Z., 2008, Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in rice, Mol. Genet. Genomics, 280(6): 547-563.
  • 7Han Q.Q., Zhang J.H., Li H.X., Luo Z.D., Ziaf K., Ouyang B., Wang T.T., and Ye Z.B., 2011, Identification and expression pattern of one stress-responsive NAC gene from Solanum lyeopersieum, Mol. Biol. Rep., 39(2): 1713-1720.
  • 8Hao Y.J., Wei W., Song Q.X., Chen H.W., Zhang Y.Q., Wang F., Zou H.F., Lei G., Tian A.G., Zhang W.K., Ma B., Zhang J.S., and Chen S.Y., 2011, Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants, Plant J., 68(2): 302-313.
  • 9Haralampidis K., Milioni D., Rigas S., and Hatzopoulos P., 2002, Combinatorial interaction of cis elements specifies the expression of the Arabidopsis AtHsp90-1 gene, Plant Physiol., 129(3): 1138-1149.
  • 10Higo K., Ugawa Y., Iwamoto M., and Korenaga T., 1999, Plant cis-acting regulatory DNA elements (PLACE) database: 1999, Nucleic Acids Res., 27(1): 297-300.

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部