期刊文献+

Z_q上的1生成准扭码 被引量:2

1-generator quasi-twisted codes over Z_q
下载PDF
导出
摘要 运用Galois环和Hensel提升的相关知识给出了多项式xn-λ(其中,λ∈Zq,q=pk,p为素数)在Zq[x]中的不可约分解方法,证明了Zq上的常循环码等价于Zq的某一Galois扩环上的循环码,并在此基础上给出了Zq上的常循环码及1生成准扭码的相关性质. The irreducible decomposition method of xn-λ(λ∈Zq,q=pk,p is a prime number) in Zq[x] was given by the relevant knowledge of Galois rings and Hensel lift.It was proved that the constacyclic codes over Zq is equivalent to a cyclic code of its Galois extension ring.And on this basis,the relevant properties of constacyclic codes and 1-generator quasi-twisted codes were given.
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2012年第3期214-219,共6页 JUSTC
基金 国家自然科学基金(60973125) 教育部高校博士点基金(200080359003)资助
关键词 准扭码 常循环码 GALOIS环 Hensel提升 quasi-twisted codes; constacyclic codes; Galois ring; Hensel lift
  • 相关文献

参考文献8

  • 1Hammons A R,Kumar P V,Calderbank A R. The Z4-linearity of Kerdock,Preparata,Goethals and related codes[J].IEEE Transactions on Information theory,1994,(02):301-318.doi:10.1109/18.312154.
  • 2Siap I,Aydin N,Ray-Chaudhuri D K. New ternary quasi-cyclic codes with better minimum distances[J].IEEE Transactions on Information theory,2000,(04):1554-1558.doi:10.1109/18.850694.
  • 3Chen Zhi. Six new binary quasi-cyclic codes[J].IEEE Transactions on Information theory,1994,(05):1666-1667.doi:10.1109/18.333888.
  • 4Kasami T. A Gilbert-Varshamov bound for quasi-cyclic codes of rate 1/2[J].IEEE Transactions on Information theory,1974,(05):679-680.
  • 5Daskalov R,Hristov P. New binary one-generator quasi-cyclic codes[J].IEEE Transactions on Information theory,2003,(11):3001-3005.doi:10.1109/TIT.2003.819337.
  • 6Aydin N,Siap I,Ray-Chaudhuri D K. The structure of 1-generator quasi-twisted codes and new linear codes[J].Designs Codes and Cryptography,2001,(03):313-326.doi:10.1023/A:1011283523000.
  • 7McGuire G. An approach to Hensel's leama[J].Irish Math Soc Bull,2001.5-21.
  • 8Wan Zhexian. Lectures on Finite Fields and Galois Rings[M].Singapore:World Scientific Publishing Co.Ptc.Ltd,2001.

同被引文献10

  • 1Hammons A R, Kumar P V. The linearity of kerdock, prepara-ta, Goethals and relate codes [J]. IEEE Trans. Inform. Theo-ry, 1994,40(2) : 301-318.
  • 2Wan Z X. Cyclic codes over Galois Rings[J]. Algebra Colloqui-um, 1999, 6:291-304.
  • 3Bhaintwal M, Wasan S K. On the quasi-cyclic codes over [J].Appl. Algebra Engrg. Comm. Comput, 20091 20: 459-480.
  • 4Aydin N, Siap 1,Ray-Chaudhuri D K. The structure of 1-gener-ator quasi-twisted codes and new linear code.s [ J]. Designs,Codes and Cryptography,2001,24: 313-326.
  • 5Siap I,Aydin N,Ray-Chaudhur D K. New ternary quasi-cycliccodes with better minimum distances [ J]. IEEE. Trans. In-form. Theory, 2000, 46:1554-1558.
  • 6Daskalov R,Metodieva E, Hristov P. New minimum distancebounds for linear codes over GF(9)[J]. Problems of InformationTransaction, 2004,40: 13-24.
  • 7Daskalov R, Metodieva E,Hristov P. New minimum distancebounds for linear codes over GF(5) [J]. Discrete Mathematics,2004, 275:97-110.
  • 8PEI Jun-ying ZHANG Xue-jun.Quaternary quasi-cyclic codes[J].Applied Mathematics(A Journal of Chinese Universities),2008,23(3):359-365. 被引量:1
  • 9李平,朱士信.环F_q+uF_q上任意长度的循环码[J].中国科学技术大学学报,2008,38(12):1392-1396. 被引量:12
  • 10Jian Gao,Qiong Kong.One Generator (1 + u)-Quasi-Twisted Codes over F2 + uF2[J].数学计算(中英文版),2013,2(1):1-5. 被引量:1

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部