期刊文献+

基于视觉反差的显著图生成与目标检测 被引量:2

Visual Contrast Based Saliency Map Generation and Object Detection
原文传递
导出
摘要 以认知神经科学的研究成果为依据,对视网膜会强烈响应大反差视觉刺激的现象和初级视觉皮层上视觉信息的生成机制进行了模拟,提出了一种基于视觉反差的显著图生成与目标检测方法。本方法可以在不考虑目标的形状、边缘或其他形式先验知识的情况下检测出场景中具有显著反差的目标。在对地场景中车辆目标的检测实验里,将其与另外两种典型的显著图生成方法进行了对比,结果显示,这种基于视觉反差的目标检测方法能够较好地将注意力集中在场景中具有较大反差的目标之上,且具有高效性和鲁棒性。 The phenomenon that the retina will strongly respond to large contrast visual stim- ulation and the generation mechanism of visual information in the primary visual cortex can be simulated. Therefore, In this paper, we propose a method generating saliency map and detecting object according to the cognitive neuroscience research. The method can detect sig- nificant contrast object without considering the shape, edge, or other forms of prior knowl- edge of the objects. We compare the method with the other two typical saliency methods in detecting vehicle target from ground scenes. The results show the detection method based on visual contrast can better concentrate on the object with greater contrast and is fast and ro- bust.
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2012年第4期379-383,376,共5页 Geomatics and Information Science of Wuhan University
基金 国家科技支撑计划资助项目(2012BAH35B03) 国家863计划资助项目(2011AA010500) 武汉大学测绘遥感信息工程国家重点实验室开放研究基金资助项目(09重点项目) 武汉大学中央高校基本科研业务费专项资金资助项目(114041)
关键词 目标检测 显著图 视觉反差 视网膜 初级视觉皮层 object detection saliency map visual contrast retina primary visual cortex
  • 相关文献

参考文献1

二级参考文献1

  • 1Wang Y J,Sci Sin B,1988年,183页

共引文献3

同被引文献46

  • 1许彬,郑链,王克勇,宋承天.基于局域灰度概率分布的小目标检测方法[J].激光与红外,2005,35(3):187-189. 被引量:9
  • 2姚迅,李德华,黄飞,石永辉.基于视觉注意机制的红外图像小目标检测方法[J].武汉大学学报(工学版),2006,39(6):108-112. 被引量:4
  • 3罗军辉,姬红兵,刘靳.一种基于空间滤波的红外小目标检测算法及其应用[J].红外与毫米波学报,2007,26(3):209-212. 被引量:37
  • 4LIU L, HUANG ZH J. Infrared dim target detection technology based on background estimate [J]. Infrared Physics & Technology, 2014, 62: 59-64.
  • 5TOM V, PELI T, LEUNG M , et al. Morphology-based algorithm for point target detection in infrared backgrounds [C]. Proc. SPIE., 1993, 1954: 2-11.
  • 6BAI X Z, ZHOU F G. Analysis of new top-hat transformation and the application for infrared dim small target detection [J]. Pattern Recognition, 2010, 43(6): 2145-2156.
  • 7SUN X D, FANG G ZH. Infrared small targets detection based on MRF model [J]. Procedia Engineering, 2012, 29: 420-424.
  • 8KIM S, LEE J. Scale invariant small target detection by optimizing signal-to-clutter ratio in heterogeneous background for infrared search and track [J]. Pattern Recognition, 2012, 45(1): 393-406.
  • 9XIA M, BIAO W H. Criterion to evaluate the quality of infrared small target images [J]. International Journal of Infrared and Millimeter Waves, 2009, 30(1): 1866-6892.
  • 10DONG X B, HUANG X SH, ZHENG Y B, et al. Infrared dim and small target detecting and tracking method inspired by Human Visual System [J]. Infrared Physics & Technology, 2014, 62: 100-109.

引证文献2

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部