期刊文献+

利用新息构造AKF估计和预报大坝变形 被引量:1

Construct AKF to Improve Precision of Estimating and Predicting Dam Deformation Using Innovation
原文传递
导出
摘要 利用线形流形的射影方法推导出新息序列统计特性,构造新息AKF,基于新息序列不断地修正状态噪声和量测噪声,实时地反映模型当前真实的统计特性。通过隔河岩大坝实测数据处理,表明该方法能很好地提高随机模型不准确和变形突变影响下的变形估计与预报精度。 The Kalman filter(KF) method is propitious to process the dynamic dam deforma- tion monitoring data. However, the state noise (R) and survey noise (Q) in the deformation monitoring is difficult to be provided precisely, the standard Kalman Filter method is con- fined. This article presents AKF based on innovation statistic properties to modify the R and Q, and to reflect correct statistic properties of current model by real time. With a dam survey data, this method succeed to overcome imprecision of stochastic model and deformation salta- tion to improve the precision of estimation and prediction in dam deformation.
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2012年第4期454-457,共4页 Geomatics and Information Science of Wuhan University
基金 国家自然科学基金资助项目(40971192)
关键词 新息AKF 状态噪声 量测噪声 变形监测 innovation AKF state noise survey noise deformation monitoring
  • 相关文献

参考文献10

  • 1黄声享,尹晖,蒋征.变形监测数据处理[M].武汉大学:武汉大学出版社,2003.
  • 2Wang Bin, Wang Jian, Wu Jianping, et al. Study on Adaptive GPS/INS Integrated Navigation System [C]. Intelligent Transportation System, Proceed- ings, IEEE, Shanghai, China, 2003.
  • 3Magill D T. Optimal Adaptive Estimation of Sam- pled Stochastic Processes[J]. IEEE Trans AC, 1965, 10(10) :434-439.
  • 4Abhik M, Parth P A, Nandi P K. Feature Identifi- cation for Fuzzy Logic Based Adaptive Kalman Fil- tering [J]. Lecture Notes in Computer Science, 2002(1) :245-252.
  • 5Chai Lin, Yuan Jianping, Fang Qun, et al. Neural Network Aided Adaptive Kalman Filter for Multi- sensors Integrated Navigation[J]. Lecture Notes in Computer Science, 2004(7) :221-237.
  • 6张双成,杨元喜,张勤.一种基于抗差自校正Kalman滤波的GPS导航算法[J].武汉大学学报(信息科学版),2005,30(10):881-884. 被引量:19
  • 7Yang Yuanxi, Xu Tianhe. An Adaptive Kalman Filter Based on Sage WindowingWeights and Vari- ance Components[J]. The Journal of Navigation, 2003,56(2):231-240.
  • 8Yang Yuanxi, He Haibo. Adaptively Robust Filte- ring for Kinematic Geodetic Positioning[J]. Journal of Geodesy, 2001, 75(2):109-116.
  • 9徐景硕,秦永元,彭蓉.自适应卡尔曼滤波器渐消因子选取方法研究[J].系统工程与电子技术,2004,26(11):1552-1554. 被引量:68
  • 10刘繁明,钱东,郭静.卡尔曼滤波地形反演算法的系统方程建模[J].武汉大学学报(信息科学版),2010,35(10):1179-1183. 被引量:3

二级参考文献13

共引文献86

同被引文献4

引证文献1

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部