期刊文献+

一种自适应的PSO粒子滤波人脸视频跟踪方法 被引量:9

Face Tracking Based on Adaptive PSO Particle Filter
原文传递
导出
摘要 提出了一种自适应的PSO粒子滤波人脸视频跟踪算法。本算法充分利用粒子群算法的寻优能力,使粒子向真实值的后验概率分布移动,同时引入小生境(niche)技术加以改进,构造出多种群特性,使目标分布呈现非线性非高斯特性的多模分布,由此提高对动态系统中最优解动态变化的自适应能力。实验表明,在简单背景匀速运动、复杂背景匀速和变速运动的人脸视频跟踪中,和传统粒子滤波、普通PSO粒子滤波相比,具有良好的跟踪精度和稳定性。 This paper presents a new adaptive PSO particle filter face tracking algorithm. Our algorithm fully utilizes particle swarm optimization(PSO) ability to make the posterior prob- ability distribution movements of the particle, meanwhile introduces the niche technology to improve the particle diversity, then the target distribution is nonlinear non-Gaussian and multi-mode, thus improves dynamic adaptive ability to the optimal solution of the dynamic system. Experimental results show that our algorithm has a good tracking accuracy and sta- bility when comparing with particle filter and traditional PSO in the simple background, complex uniform and variable motion background.
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2012年第4期492-495,共4页 Geomatics and Information Science of Wuhan University
基金 国家自然科学基金资助项目(61102090)
关键词 人脸跟踪 自适应PSO 粒子滤波 face iracking adaptive PSO particle filter
  • 相关文献

参考文献3

二级参考文献39

  • 1Skifstad K, Jain R. Illumination Independent Change Detection from Real World Image Sequences [J]. Computer Vision, Graphic, Image Process, 1989,46: 387-399.
  • 2Li L, Huang W, Gu I Y, et al. Statistical Modeling of Complex Backgrounds for Foreground Object Detection[J]. IEEE Transactions on Image Process ing, 2004, 13(11):1 459-1 472.
  • 3Durucan E, Ebrahimi T. Change Detection and Background Extraction by Linear Algebra[J]. Proceedings of the IEEE, 2001, 89(10):1 368-1 381.
  • 4Liu Q, Sun M G, Sclabassi R I. Illumination in Variant Change Detection Model for Patient Monitoring Video[C], The 26th Annual International Conference of the IEEE EMBS, USA, 2004.
  • 5Aach T, Kaup A, Mester R. Statistical Model- based Change Detection in Moving Video[J]. Signal Processing, 1993, 31:165-180.
  • 6Stauffer C, Grimson W. Learning Patterns of Ac tivity Using Realtime Tracking[J]. IEEE Transac tions on Pattern Anal Machine Intell, 2000, 22 747-757.
  • 7Elgammal A, Harwood D, Davis L. Nonparametric Model for Background Subtraction[C]. The 6th Eur Conference on Computer Vision, Dublin, Ireland, 2000.
  • 8Pece A E C. Tracking of Non-Gaussian Clusters in the PETS2001 Image Sequences[C]. The 2nd IEEE International Workshop on PETS, Kauai, HI, 2001,
  • 9Ming Ying. Detection and Tracking of Semantic Moving Objects Based on Cauchy Distribution[D]. Wuhan: Wuhan University, 2004.
  • 10Duda R O, Hart P E, Stork D G. Pattern Classification[M]. 2nd ed. New York: John Wiley & Sons, 2000.

共引文献101

同被引文献65

引证文献9

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部