期刊文献+

冲击载荷作用下Mg-Li合金的力学性能及显微组织 被引量:3

Mechanical Property and Microstructure of Mg-Li Alloys under High Strain Rate Impact Load
原文传递
导出
摘要 采用分离式霍普金森压杆(SHPB)对真空熔炼制备的Mg-Li合金进行了静、动态试验研究,试件的加载应变率范围为1.7×10-3~1026s-1,得到了材料在不同应变率下的应力-应变曲线。并根据实验结果确立了Mg-Li合金在一维应力高应变率冲击状态下的本构关系。同时还分析了不同应变率冲击后Mg-Li合金的金相组织。结果表明,该Mg-Li合金在室温下的动态冲击性能对应变率不敏感。Mg-Li合金在一维应力高应变率冲击状态下的本构关系为σ=1.5ε,(σ<0.12GPa),σ=0.12+2.7ε1.2(σ≥0.12GPa)。随着应变率的增加,晶粒尺寸先变小,再趋于不规则形状,而且晶界处分布的短条状化合物也逐渐集中。 The static and dynamic mechanical responses of Mg-Li alloy prepared by vacuum induction melting were investigated by split Hopkinson pressure bar (SHPB) under the strain rates of 1.7×10^-3-1026 s^-1, and the stress-strain curves under different strain rates were obtained. Based on the SHPB experimental results, the constitutive relation of this alloy under one-dimensional stress high strain rates impact was fitted. Besides, the metallurgical structure of the Mg-Li alloy after impact under different strain rates was also analyzed. Results show that the dynamic impact properties of the Mg-Li alloy are not sensitive to the strain rate. The constitutive relation of the Mg-Li alloy under one-dimensional stress high strain rates impact is σ=1.5c (σ〈0.12 GPa), and σ=0.12+2.7ε^1.2 (σ〉0.12 GPa). With increase of the strain rate, the grains become smaller at first and then tend to be irregular shapes. The short-strip compounds are concentrated distributing in the boundaries.
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2012年第3期514-517,共4页 Rare Metal Materials and Engineering
基金 教育部博士点基金(20092304110003) 中央高校科研基本业务费(GK2020260124)
关键词 Mg-Li合金:高应变率 本构关系:显微组织 Mg-Li alloys high strain rates constitutive relation microstructure
  • 相关文献

参考文献1

二级参考文献17

  • 1Sherby O.D., Nieh T.G., and Wadsworth J., Some thoughts on future directions for research and applications in superplasticity, Mater Sci. Forum, 1997, 243-245:11.
  • 2Mukai T., Watanabe H., and Higashi K., Application of superplasticity in commercial magnesium alloy for fabrication of structural components, Mater. Sci. Technol., 2000, 16 (11-12): 1314.
  • 3Watanabe H., Mukai T., Kohzu M., Tanabe S., and Higashi K., Low Temperature superplasticity in a ZK60 magnesium alloy, Mater. Trans., 1999, 40 (8): 809.
  • 4Watanabe H., Mukai T., Ishikawa K., Mohri T., Mabuchi M., and Higashi K., Superplasticity of a particle-strengthened WE43 magnesium alloy, Mater. Trans., 2001, 42 (1): 157.
  • 5Mabuchi M., Asahina T., Iwasaki H., and Higashi K., Experimental investigation of superplastic behaviour in magnesium alloys, Materi. Sci. Technol., 1997, 13 (10): 825.
  • 6Mabuchi M., Ameyama K., Iwasaki H., and Higashi K., Low temperature superplasticity of AZ91 magnesium alloy with non-equilibrium grain boundaries, Acta Mater., 1999, 47 (7): 2047.
  • 7Bussiba A., Ben Artzy A., Shtechman A., Ifergan S., and Kupiec M., Grain refinement of AZ31 and ZK60 Mg alloys - towards superplasticity studies, Mater. Sci. Eng., 2001, A302: 56.
  • 8Watanabe H., Mukai T., Kohzu M., Tanabe S., and Higashi K. Effect of temperature and grain size on the dominant diffusion process for superplastic flow in an AZ61 magnesium alloy, Acta Mater., 1999, 47 (14): 3753.
  • 9Mabuchi M. and Higashi K., The processing, properties, and applications of high strain-rate superplastic materials, J. Mater. Sci., 1998, 50 (6): 34.
  • 10Langdon T.G., Furukawa M., Horita Z., and Nemoto M., Using intense plastic straining for high-strain-rate superplasticity, J. Mater., 1998, 50 (6): 41.

共引文献5

同被引文献34

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部