期刊文献+

仿生智能纳米通道在能量转换中的应用 被引量:2

Biomimetic Smart Nanochannels for Energy Conversion
原文传递
导出
摘要 智能纳米通道由于独特的纳米结构,导致对离子的通过具有选择性、整流性和门控性,从而在能量转换领域具有重要的应用前景。本文根据能量转换原理的不同,将纳米通道在能量转换中的应用分为:模仿电鳗鱼将化学能转换为电能,模仿绿叶将光能转换为化学能,模仿菌紫质将光能转换为电能,模仿水力发电机将流体机械能转换为电能。其中,模仿电鳗鱼系统由于广泛的能量来源、高的能量转换效率以及输出的能量形式为电能,应用前景最为广阔。能量转换的性能受纳米通道自身的几何结构以及内表面电荷密度的影响。除此之外,还受外界条件的影响,比如电解质溶液类型和浓度,浓差和气压差的大小以及pH值等。 Biomimetic smart nanochannels show great potential in the field of energy conversion due to the special structure and responsive property. This article describes the recent progress in the biomimetic energy conversion systems and consists of four parts based on the different mechanisms of energy conversion: the chemoelectrical conversion system to mimic the electrical eel, the photochemical conversion system to mimic the green leaf, the photoelectrical system to mimic the bacteriorhodopsin, the electrochemomechanical conversion system to mimic the hydroelectric power. These biomimetic energy conversion systems can help people to better understand the energy conversion processes in nature. Furthermore, they can inspire the scientists to develop artificial energy devices with better performance. Among them the eel-inspired chemoelectrical conversion system shows the most promising future due to its high energy conversion efficiency and widespread energy input from mixing river water with sea water: The leaf-inspired photochemical conversion system is difficult to utilize with its energy output in the form of ATP. The bacteriorhodopsin-inspired photoelectrical system shows a bright future regardless of its relatively low energy conversion efficiency. The hydroelectric-inspired electrochemomechanical conversion system is in its infancy and needs further investigation. The performance of these systems is influenced by the geometric structure and the charge densities of the nanochannel, as well as the external environment such as the type and concentration of the solution, the concentration or pressure difference, pH and so on.
作者 张明辉 翟锦
出处 《化学进展》 SCIE CAS CSCD 北大核心 2012年第4期463-470,共8页 Progress in Chemistry
基金 国家重大科学研究计划项目(No.2011CB935704)资助
关键词 纳米通道 离子通道 离子泵 仿生 能量转换 nanochannel ion-channel ion-pump biomimetic energy conversion
  • 相关文献

参考文献4

二级参考文献256

共引文献38

同被引文献24

  • 1Rakesh B. Katragadda,Xu Y~. novel intelligent textile technok)gy based on silicon flexible sldns[J].MEMS, 2007: 21.
  • 2Harrell C.C., Choi Y., Home L.P., et al. Resistive-ptdse DNA Detection with a Conical Nanopore Sensor [J]. Langnauir, 2006, 22(25): 10837.
  • 3Heins E.A., Baker LA,, Siwy Z.S., et al. Effect of Crown Ether on Ion Currents through Synthetic Membranes Containing a Single Conically Shaped Nanopore [J]. J. Phys. Chem. B, 2005,109(39): 18400.
  • 4Fologea D., Gershow M., Ledden B., et al. Demcting Single Strande, t DNA with a Solid State Nanolmre [J]. Nano Lem, 2005, 5(10): 1905.
  • 5Siwy Z.S. et ak Ion transport througqa asymmetric nanopores prepared by ion track etching [J].Nuck Instrum. Meth. B, 2003, 208: 143.
  • 6Apel P.Y., Korchev Y.E., Siwy Z.S., et al. Diode-Like Single Ion-Track Membrane Prepared by Electro-Stopping [Jl. Nucl. Instrum. Methods Phys. Res., Sect B, 2001, 184(3): 337.
  • 7Apel P.Y., Blonskaya I.V., Dmitriev S.N., et al. Surfactant-Controlled Etching of Ion Track Nanopores and Its Practical Applications in Membrane Technology [J]. Radiat Meas, 2008, 43: S552.
  • 8Apd P.Y., Blonskaya I.V., Orelovitch O.L., et al. Diode-Like Ion-Track Asymmetric Nanopores: Some Alternative Methods of Fabrication [J]. Nud. Instrum. Methods Phys. Res., Sect. B, 2009, 267(6): 1023.
  • 9Thomas V., Frederick B., Fabrice A., et al.Stretchable ,and washable electronics for integration in textiles[J]. Cint textile, 20(19: 20.
  • 10Et-SherifM.A., YuanJ .M., MacDiarmidA.Fiber opdc sensors and smart fabrics[J].J. Intel. Mat Syst Str,2000, 11(5): 407.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部