期刊文献+

基于历史频繁模式的交通流预测算法 被引量:1

Traffic flow prediction algorithm based on historical frequent pattern
下载PDF
导出
摘要 针对目前交通流预测模型复杂、不支持中长期预测的问题,提出了基于历史频繁模式的交通流预测算法,通过挖掘交通流的历史频繁模式,结合实时交通信息进行交通流预测。使用真实路网获取的浮动车数据进行实验,结果表明该算法支持交通流短时、中长期预测,且中长期预测与短时预测具有同样高的预测精度,受参数影响小。与基于K近邻的非参数回归方法进行比较,结果表明基于历史频繁模式的预测算法的预测性能更稳定,预测误差波动更小。 According to the problem that traffic flow prediction have two defects, have complex models and can't support the long-term traffic flow prediction, a historical frequent pattern based algorithm is proposed. The algorithm includes two steps. First, mining the frequent patterns of historical traffic {low~ second, predict traffic flow combined with real-time traffic informa- tion. By using the real probe vehicle data, experimental results show that the algorithm proposed can predict short-term and long-term traffic flow efficient and effective, with high prediction accuracy and robust to parameters. In particular, long-term traffic forecasting with the same high prediction accuracy as short-term traffic forecasting. Finally, compared with the K-NN based nonparametric regression method, higher prediction accuracy and smaller prediction error volatility of this algorithm are shown.
出处 《计算机工程与设计》 CSCD 北大核心 2012年第4期1547-1552,共6页 Computer Engineering and Design
基金 2008年广东省现代信息服务业发展专项基金项目(06120840B0450124/2) 华南理工大学中央高校基本科研业务费专项基金项目(2011SM003)
关键词 智能运输 交通流预测 频繁模式 浮动车 数据挖掘 intelligent transportation traffic flow prediction frequent patternsl probe vehicles data mining
  • 相关文献

参考文献5

二级参考文献66

共引文献118

同被引文献11

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部