期刊文献+

四类典型域的Gromov辛宽度和Hofer-Zehnder辛容量

Symplectic capacities of the classical domains of four types
下载PDF
导出
摘要 辛容量是研究辛拓扑和哈密尔顿动力系统的重要的不变量,对辛容量的计算和估计通常是很困难的.本文对多复变函数论和复几何中的一类重要的研究对象———典型域进行了Gromov辛宽度和Hofer-Zehnder辛容量的计算,并对四类典型域做出了较好的上、下界的估计,极大地方便了典型域的进一步研究. The symplectic capacities are important invariant in the study of symplectic topology and Hamihonian dynam- ics. However, their computations and estimations are difficult. In this paper, we calculate and estimate the Gromov sym- plectic width and Hofer-Zehnder symplectic capacities of the classical domains of four types which play important roles in the theory of functions of several complex variables and complex geometry. This is very useful to the further study of the classi cal domains.
作者 张巧 杨永
出处 《周口师范学院学报》 CAS 2012年第2期34-38,共5页 Journal of Zhoukou Normal University
基金 郑州航空工业管理学院青年基金资助项目(No.Q09JS02)
关键词 辛容量 Gromov辛宽度 Hofer—Zehnder辛容量 典型域 symplectic capacity Gromov symplectic width Hofer-Zehnder capacity classical domains
  • 相关文献

参考文献6

  • 1Gromov M.Pseudoholomorphic curves in symplectic manifolds[J].Invent.Math.,1985,82:307-347.
  • 2Ekeland I,Hofer H.Symplectic topology and Hamiltonian dynamics[J].Mathematische Zeitschrift,1989,200:355-378.
  • 3Hofer H,Zehnder E.A new capacity for symplectic manifolds[M].New York:Academic Press,1990:405-429.
  • 4Lu G C.Gromov-Witten invariants and pseudo symplectic capacities[J].Israel Journal of Mathematics,2006,156:1-63.
  • 5Lu G C.Symplectic capacities of toric manifolds and related results[J].Nagoya mathematical Journal,2006,181:149-184.
  • 6Gin Zburg V L.The Weinstein conjecture and the theorems of nearby and almost existence[J].Progr.Math.,2005,232:139-172.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部