期刊文献+

基于多类支持向量机的化学物质生态危害分类研究 被引量:1

Classification of Chemicals by Ecological Hazard Using Multi-Class Support Vector Machines
下载PDF
导出
摘要 应用多类支持向量机(M-SVMs)方法研究了化学物质生态危害程度的分类,以提高分类的准确性和效率。对采集到的61种环境优先污染物的环境行为和生物毒性方面的7项指标进行相关性分析,建立了M-SVMs分类模型并对数据集进行10折交叉验证以评价模型的分类能力,运用所建模型对7种化学物质的生态危害进行预测。结果表明,去除与鱼毒有信息重叠的溞毒指标,选取鱼毒、藻毒、降解性、蓄积性、分配系数和吸附系数6项指标用于构建M-SVMs分类模型;M-SVMs模型识别率较高,交叉验证平均分类正确率达86.89%;对7种化学物质生态危害的预测结果与实际情况基本相符。 Classification of chemicals by ecological hazard was studied with the multi-class support vector machines (M-SVMs) to improve accuracy and efficiency of the classification. A total of 61 environmental priority pollutants that had already been collected were analyzed for correlation between 7 indexes in the aspects of environmental behavior and biotoxicity. On such a basis a M-SVMs classification model was established and 10-fold cross validation of its dataset was conducted to evaluate classification ability of the model. Then the model was applied to predict ecological hazard of 7 chemicals. Results show that the index of daphnia toxicity, overlapping some of the information of the index of fish toxicity, was excluded from the 7 indexes. So only 6, i. e. as fish toxicity, alga toxicity, biodegradability, bioconcentration, distributivity and adsorbability were selected in building the M-SVMs classification model. The M-SVMs model was quite high in identification rate and cross-validation indicated that its mean classification accuracy reached up to 86.89%, and its prediction of the 7 chemicals in ecological hazard basically tallies with the actual situation.
出处 《生态与农村环境学报》 CAS CSSCI CSCD 北大核心 2012年第2期217-220,共4页 Journal of Ecology and Rural Environment
基金 环保公益性行业科研专项
关键词 多类支持向量机 化学物质 生态危害 分类 multi-class support vector machines(M-SVMs) chemicals ecological hazard classification
  • 相关文献

参考文献7

二级参考文献52

  • 1焦李成.神经网络系统理论[M].西安:西安电子科技大学出版社,1996..
  • 2焦李成.神经网络的应用与实现[M].西安:西安电子科技大学出版社,1996..
  • 3张学工(译).统计学理论的本质[M].北京:清华大学出版社,1999..
  • 4(独)製品評価技術基盤機構:届出外排出量の推計値の対象化学物質別集計结果算出事項(対象業種?非対象業種?家庭?移動体)别の集計表3-2都道府県別[EB/OL].(2004-03-14)[2008-08-15].hnp://www.prtr.nite.go.jp/prtr/csv/2004a/2004a3-2.csv.
  • 5吴逸飞.模式识别--原理、方法及应用[M].北京:清华大学出版社,2002:64-119.
  • 6D'HEYGERE T, GOETHALS P L M, PAUW N D. Genetic Algorithms for Optimisation of Predictive Ecosystems Models Dased on Decision Trees and Neural Networks [ J]. Ecological Modeling, 2006,195 ( 1/2 ) :20 - 29.
  • 7BUONTEMPO F V, WANG X Z, MWENSE M, et al. Genetic Programming for the Induction of Decision Trees to Model Ecotoxicity Data [ J ]. Journal of Chemical Information and Modeling, 2005,45(4) :904-912.
  • 8ASHMAN W P, LEWIS J H,POZIOMEK E J. Decision Tree for Chemical Detection Applications[J]. Analytical Chemistry,1985, 57(9) :1951 - 1955.
  • 9GINORIS Y P, AMARAL A L, NICOLAU A. Recognition of Protozoa and Metazoa Using Image Analysis Tools, Discriminant Analysis, Neural Networks and Decision Trees[ J]. Analytica Chimiea Acta,2007,595 ( 1/2 ) : 160 - 169.
  • 10EISENBERG J N S, MCKONE T E. Decision Tree Method for the Classification of Chemical Pollutants: Incorporation of Across- Chemical Variability and Within-Chemical Uncertainty [ J ]. Environmental Science and Technology, 1998,32(21 ) :3396 -3403.

共引文献624

同被引文献12

  • 1RAYMOND J W,ROGERS T N,SHONNARD D R,et al. A Review of Structure-Based Biodegradation Estimation Methods [ J]. Journal of Hazardous Materials ,2001,84 (2) : 189 - 215.
  • 2European Economic Community. Council Regulation 793/93/EEC of March 23,1993 on the Evaluation and Control of the Risks of Existing Substances. Official Journal of the European Community L84/1 [S].
  • 3HAMMETF L P. The Effect of Structure Upon the Reactions of Organic Compounds [ J 1. Journal of the American Chemical Society, 1937,59( 1 ) :96 - 103.
  • 4TAFT R W Jr. Polar and Steric Substituent Constants for Aliphatic and o-Benzoate Groups From Rates of Esterification and Hydrolysis of Esters[J]. Journal of the American Chemical Society, 1952,74 (12) :3120 -3128.
  • 5HANSCH C,LEO A,UNGER S H. Aromatic Substituent Constants for Structure-Activity Correlations[ J]. Journal of Medicinal Chemistry,1973,16(11 ):1207 - 1216.
  • 6Organization for Economic Cooperation and Development. Anaerobic Biodegradation of Organic Compounds in Digested Sludge: Method by Measurement of Gas Production. Guideline 301 [ S ]. Adopted March 23,2006, Paris, France.
  • 7TETKO I V, KOVALISHYN V V, LIVINGSTONE D J. Volume Learning Algorithm Artificial Neural Networks for 3D QSAR Studies [ J ]. Journal of Medicinal Chemistry ,2001,44( 15 ) :2411 - 2420.
  • 8NETZEVA T I,SCHULTZ T W. QSARs for the Aquatic Toxicity of Aromatic Aldehydes From Tetrahymena Data [ J ]. Chemosphere, 2005,61 ( 11 ) : 1632 - 1643.
  • 9VAPNIK V N. The Nature of Statistical Learning Theory[ M]. New York, USA : Springer-Verlag New York, Inc. , 1995:97 - 99.
  • 10VAPNIK V N. Statistical Learning Theory [ M ]. New York, USA: Wiley, 1998 : 76 - 77.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部