期刊文献+

基于量子粒子群算法的电力系统无功优化 被引量:2

Reactive Power Optimization in Power System Basded on Quantum Particle Swarm Optimization Algorithm(QPSO)
下载PDF
导出
摘要 本文提出了一种量子粒子群算法解决电力系统无功优化问题。量子粒子群算法采用实数编码,融合了量子进化算法的概率性并进行计算和粒子群算法的更新策略,在全局寻优能力和保持种群多样性方面表现出了较大优势,而且寻优速度快。另外,为了避免大量不可行初始解,本文采用倾斜分布式启发方法得到初始种群。IEEE-30系统证明了量子粒子群算法的高效性和鲁棒性。 A new evolutionary algorithm called Quantum Particle Swarm Optimization Algorithm (QPSO) is proposed in this paper to solve reactive power optimization in power system. QPSO is based on real-number coding, which combines both probabilistic parallel computing of Quantum Evolutionary Algorithm (QEA) and update policy of Particle Swarm Optimization (PSO). QPSO have greater superiority in global search ability and proper population multiplicity, as well as speedy convergence, In addition, an inclining initialization is adopted in order to avoid a great quantity of infeasible solutions. IEEE-30 system proves efficiency and robustness of QPSO.
作者 张斌 刘幸
出处 《电气技术》 2012年第2期15-19,共5页 Electrical Engineering
关键词 无功优化 量子粒子群算法 概率性 倾斜分布式启发 reactive power optimization Quantum Particle Swarm Optimization Algorithm (QPSO): probabilistic inclining initialization
  • 相关文献

参考文献6

二级参考文献61

共引文献92

同被引文献27

  • 1胡彩娥,杨仁刚.考虑电压稳定的电力系统无功优化规划[J].继电器,2005,33(4):22-25. 被引量:15
  • 2Alsac O,Bright J,Prais M,et al.Further developments in LP-based optimal power flow[J].Power Systems,IEEE Transactions on,1990,5(3):697-711.
  • 3Momoh JA.E1-Hawary M E,adapa R.A review of selected optimal power flow literature to 1993.I.nonlinear and quadratic programming approaches[J].IEEE Transactions on Power Systems,1999,14(1):96-104.
  • 4Sun Di,Ashley B,Brewar B,et al.Optimal power flow by Newton approach[J].IEEE Transactions on Apparatus and Systems,1984,103(10):2864-2880.
  • 5Kennedy J,Eberhart RC.Particle swarm optimization[C].Proceedings of IEEE International Conference on Neural Networks,1995:1942-1948.
  • 6Kessel P,Glavitsch H.Estimating the voltage stability of a power system[J].Power Delivery,IEEE Transactions on,1986,1(3):346-354.
  • 7Della Cioppa A,De Stefano C,Marcelli A.On the role of population size and niche radius in fitness sharing[J].IEEE Transactions on Evolutionary Computation,2004,8(6):580-592.
  • 8周晓娟,蒋炜华,马丽丽.基于改进遗传算法的电力系统无功优化[J].电力系统保护与控制,2010,38(7):37-41. 被引量:33
  • 9张炳才,秦四娟,乔世军,卢志刚.基于改进微分进化算法的电力系统无功优化[J].电力系统保护与控制,2010,38(15):91-94. 被引量:15
  • 10牛铭,黄伟,郭佳欢,苏玲.微网并网时的经济运行研究[J].电网技术,2010,34(11):38-42. 被引量:149

引证文献2

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部