期刊文献+

目标光谱指导下的高光谱图像混合像元分解方法 被引量:3

Target spectra guided spectral unmixing for hyperspectral images
下载PDF
导出
摘要 针对现在高光谱图像混合像元分解方法需要对所提取的端元的物理含义进行诠释的问题,提出了一种目标光谱指导下的混合像元分解方法,并给出了其具体算法实现。该方法首先针对若干给定的、具有明确物理含义的目标光谱,将光谱识别步骤引入混合像元分解过程,建立端元光谱与目标光谱间的对应关系,其次在最小距离限制的非负矩阵分解(MDC—NMF)方法基础上,引入光谱特征距离(SFD)作为正则项,以度量和保持存在对应关系的端元光谱与目标光谱间的相似性,并给出求解相应优化问题的优化算法。分别用模拟数据和真实数据对该方法的可行性和实际混合像元分解效果进行了验证,并将其与非监督情况下混合像元分解结果进行了比较分析。实验结果表明,该方法能够在目标光谱指导下较好诠释端元的物理含义,同时解决端元提取中的病态性问题。 In this paper, the problem about how to interpret the physical meanings of the endmembers extracted by spectral unmixing for hyperspectral images is paid special attention, and a new target spectra guided spectral unmixing method is proposed. The method is described below: Firstly, for some given target spectra with specific physical meanings, spectrum recognition is introduced into the procedure of spectral unmixing in order to establish the corre- spondence between endmember spectra and target spectra; Secondly, under the framework of minimum distance constrained nonnegative matrix faetorization (MDC-NMF) method, a new regularization term, namely spectral fea- ture distance (SFD), is proposed to measure and maintain the similarity between endmember spectra and target spectra which share a correspondence, and meanwhile, to solve the relevant optimization problem, an optimization algorithm is proposed accordingly. The feasibility and the real performance of the new method were examined and compared with that of the unsupervised spectral unmixing method by using a set of synthetic data and real hyper- spectral images. The experimental results demonstrate that, by introducing the guidance of target spectra, the phys- ical meanings of the extracted endmembers can be properly interpreted and the ill-posedness of the solution of spec- tral unmixing can be eliminated.
作者 于钺 孙卫东
出处 《高技术通讯》 CAS CSCD 北大核心 2012年第3期240-248,共9页 Chinese High Technology Letters
基金 863计划(2007AA122149)和国家自然科学基金(60872083)资助项目.
关键词 高光谱图像 目标光谱 混合像元分解 光谱识别 小波变换 hyperspectral image, target spectra, spectral unmixing, spectrum recognition, wavelet transform
  • 相关文献

参考文献23

  • 1Keshava N, Mustard J. Spectral unmixing. IEEE Signal Processing Magazine, 2002, 19( 1 ) : 44-57.
  • 2Landgrebe D. Hyperspectral image data analysis. IEEE Signal Processing Magazine, 2002, 19( 1 ) : 17-25.
  • 3Manolakis D, Shaw G. Detection algorithms for hyperspectral imaging applications. IEEE Signal Processing Magazine, 2002, 19( 1 ) : 29-43.
  • 4Landgrebe D A. Multispectral land sensing: Where from, where to? IEEE Transactions on Geoscienee and Remote Sensing, 2005, 43(3): 414-421.
  • 5郭山,袁路,孙卫东.基于特征端元提取的像元分解方法[J].高技术通讯,2008,18(10):1035-1040. 被引量:3
  • 6Keshava N. A survey of spectral unmixing algorithms. Lincoln Laboratory Journal, 2003, 14( 1 ) : 55-78.
  • 7Chang C-I, Ed. Hyperspectral data exploitation: Theory and applications. New York: Wiley, 2007. 107-203.
  • 8Clark R N, Swayze G A, Wise R, et al. USGS digital spectral library splib06a: U.S. Geological Survey, Digital Data Series 231. http://speclab, cr. usgs. gov/spectral. lib06: USGS, 2007.
  • 9Dobigeon N, Tourneret J Y, Chang C I. Semi-supervised linear spectral unmixing using a hierarchical Bayesian model for hyperspectral imagery. IEEE Transactions on Geoscience and Remote Sensing, 2008, 56 (7): 2684- 2695.
  • 10Asrar G. Theory and Applications of Optical Remote Sensing. New York: Wiley, 1989. 336-424.

二级参考文献7

  • 1Lunetta R S, Congahon R G, Fenstermaker L K. Remote sensing and geographic information system data integration: error sources and research issues. Photogrammetric Engineering and Remote Sensing, 1991, 57(6) : 677-687
  • 2Yu S X, Shi J B. Multiclass spectral clustering. In: Proceedings of the 9th IEEE International Conference on Computer Vision, Nice, France, 2003. 313-319
  • 3Ng A Y, Jordan M, Weiss Y. On spectral clustering: analysis and an algorithm. In: Proceedings of the 2001 Neutral Information Processing Systems Conference, Cambridge, MA: MIT Press, 2002
  • 4Plaza A, Martinez P, Perez R, et al. Spatial/Spectral endmember extraction by multidimensional morphological operations. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(9): 2025-2041
  • 5Berman M, Kiiveri H, Lagerstrom R, et al. A statistical approach to identifying endmembers in hyperspectral images. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(10) : 2085-2095
  • 6Winter M E. N-FINDR: An algorithm for fast autonomous spectral end-member determination in hyperspectral data. In: Proceedings of SPIE Imaging Spectrometry, Washington: SPIE Pub, 1999. 266-275
  • 7吕长春,王忠武,钱少猛.混合像元分解模型综述[J].遥感信息,2003,25(3):55-58. 被引量:84

共引文献2

同被引文献35

  • 1Bioucas-Dias J M, Plaza A, Dobigeon N, Parente M, Du Q, Gader P, Chanussot J. Hyperspectral unmixing overview: geometrical, statistical, and sparse regression-based approaches. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5(2): 354-379.
  • 2Zhu F Y, Wang Y, Xiang S M, Fan B, Pan C H. Structured sparse method for hyperspectral unmixing. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 88: 101-118.
  • 3Atkinson P M. Mapping sub-pixel boundaries from remote sensed images. In: Proceedings of the Innovations in GIS 4. London, UK: Taylor & Francis, 1997. 166-180.
  • 4Muad A M, Foody G M. Super-resolution mapping of lakes from imagery with a coarse spatial and fine temporal resolution. International Journal of Applied Earth Observation and Geoinformation, 2012, 15: 79-91.
  • 5Atkinson P M. Issues of uncertainty in super-resolution mapping and their implications for the design of an inter-comparison study. International Journal of Remote Sensing, 2009, 30(20): 5293-5308.
  • 6Boucher A, Kyriakidis P C, Cronkite-Ratcliff C. Geostatistical solutions for super-resolution land cover mapping. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(1): 272-283.
  • 7Mertens K C, De Baets B, Verbeke L P C, De Wulf R R. Direct sub-pixel mapping exploiting spatial dependence. In: Proceedings of IEEE International Symposium on Geoscience and Remote Sensing. New York, USA: IEEE, 2004, 5: 3046-3049.
  • 8Mertens K C, de Baets B, Verbeke L P C, de Wulf R R. A sub-pixel mapping algorithm based on sub-pixel/pixel spatial attraction models. International Journal of Remote Sensing, 2006, 27(15): 3293-3310.
  • 9Verhoeye J, De Wulf R. Land cover mapping at sub-pixel scales using linear optimization techniques. Remote Sensing of Environment, 2002, 79(1): 96-104.
  • 10Mertens K C, Verbeke L P C, Ducheyne E I, De Wulf R R. Using genetic algorithms in sub-pixel mapping. International Journal of Remote Sensing, 2003, 24(21): 4241-4247.

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部