期刊文献+

Entropy majorization, thermal adiabatic theorem, and quantum phase transitions

Entropy majorization, thermal adiabatic theorem, and quantum phase transitions
原文传递
导出
摘要 Let a general quantum many-body system at a low temperature adiabatically cross through the vicinity of the system's quantum critical point. We show that the system's temperature is signif- icantly suppressed due to both the entropy majorization theorem in quantum information science and the entropy conservation law in reversible adiabatic processes. We take the one-dimensional transverse-field Ising model and the spinless fermion system as concrete examples to show that the inverse temperature might become divergent around the systems' critical points. Since the temper- ature is a measurable quantity in experiments, it can be used, via reversible adiabatic processes at low temperatures, to detect quantum phase transitions in the perspectives of quantum information science and quantum statistical mechanics. Let a general quantum many-body system at a low temperature adiabatically cross through the vicinity of the system's quantum critical point. We show that the system's temperature is signif- icantly suppressed due to both the entropy majorization theorem in quantum information science and the entropy conservation law in reversible adiabatic processes. We take the one-dimensional transverse-field Ising model and the spinless fermion system as concrete examples to show that the inverse temperature might become divergent around the systems' critical points. Since the temper- ature is a measurable quantity in experiments, it can be used, via reversible adiabatic processes at low temperatures, to detect quantum phase transitions in the perspectives of quantum information science and quantum statistical mechanics.
机构地区 [
出处 《Frontiers of physics》 SCIE CSCD 2012年第2期244-251,共8页 物理学前沿(英文版)
关键词 quantum phase transition entropy majorization quantum phase transition, entropy majorization
  • 相关文献

参考文献26

  • 1S.Sachdev. Quantum Phase Transitions[M].Cambridge:Cambridge University Press,2000.
  • 2M.A.Nielsen,1.L.Chuang. Quantum Computation and Quantum Information[M].Cambridge:Cambridge University Press,2000.
  • 3L.Amico,R.Fazio,A.Osterloh,V.Vedral. Entanglement in many-body systems[J].Reviews of Modern Physics,2008,(02):517.doi:10.1103/RevModPhys.80.517.
  • 4A.Osterloh;L.Amico;G.Falci;R.Fazio.查看详情[J],Nature2002(6881):608.
  • 5T.J.Osborne;M.A.Nielsen.查看详情[J],Physical Review A2002(03):032110.
  • 6P.Zanardi;N.Paunkovi(c).查看详情[J],Physical Review E2006(03):031123.
  • 7H.Q.Zhou;J.P.Barjaktarevic.查看详情[J],Journal of Physics A:Mathematical and General,2008,(41):412001.
  • 8W.L.You;Y.W.Li;S.J.Gu.查看详情[J],Physical Review E2007(02):022101.
  • 9S.J.Gu.查看详情[J],International Journal of Modern Physics B20104371.
  • 10X.Peng;J.Du;D.Suter.查看详情[J],Physical Review A2005(01):012307.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部