期刊文献+

融合人脸与步态周期模式的行人检测

A pedestrian detection method integrating face information and gait period pattern
下载PDF
导出
摘要 提出多自由度的多核跟踪MeanShift算法,其在运动人体目标与背景图像的颜色信息较为接近时仍能鲁棒地跟踪.将所提出的跟踪算法用于融合人脸与步态周期模式的行人检测新算法,将闭环的控制思想引入到行人检测中,即通过步态周期和相应的跟踪反馈验证的理论方法来解决行人检测中误报率高的问题;还对行人部分轮廓存在遮挡的情况提供行人检测的新思路,即通过检测人脸来确定检测对象是否是行人,以解决当前行人检测算法检测率低的问题. Multi-degree-of-freedom and multi-kernel MeanShift tracking algorithm was proposed in this paper. Whenever the color information of the target is close to that of the background image, the track was still robust. Moreover, this proposed tracking algorithm was applied to a novel moving pedestrian detection integrating face information and gait period pattern. The idea of closed loop control was involved into the pedestrian detection, i6, gait period detection and corresponding tracking feedback control validation were employed to solve the problem of high false positive rate in the pedestrian detection. Furthermore, to resolve the problem of low detection rate in pedestrian detection, the proposed algorithm may provide a novel attacking approach for the parts of contour with occlusion existing in pedestrian detection, and whether a pedestrian existed or not can be determined through human face detection.
出处 《应用科技》 CAS 2012年第1期44-50,共7页 Applied Science and Technology
基金 中国博士后科学基金面上资助项目(20110491087)
关键词 行人检测 人脸检测 步态周期检测 多自由度 多核跟踪MeanShift pedestrian detection face detection gait period detection multi-degree-of-freedom multi-kernel MeanShift tracking
  • 相关文献

参考文献20

  • 1VIOLA P, JONES M, SNOW D. Detecting pedestrians using patterns of motion and appearance[C]//Proceedings of International Conference on Computer Vision. Washington DC, USA, 2003: 734-741.
  • 2CUI Xinyi, LIU Yazhou, SHAN Shiguang, et al. 3D Haar-like features for pedestrian detection[C]//2007 IEEE International Conference on Multimedia and Expo. Beijing, China, 2007: 1263-1266.
  • 3SEN B K, FUJIMURA K, KAMIJO S. Pedestrian detection by on-board camera using collaboration of inter-layer algorithm[C]//12th International IEEE Conference on Intelligent Transportation Systems. St. Louis, USA, 2009: 1-8.
  • 4GUO Lie, WANG Rongben, JIN Lisheng, et al. Algorithm study for pedestrian detection based on monocular vision[C]//IEEE International Conference on Vehicular Electronics and Safety. Shanghai, China, 2006: 83-87.
  • 5CHENG Hong, ZHENG Narming, QIN Junjie. Pedestrian detection using sparse Gabor filter and support vector machine[C]//Proceedings of 2005 Intelligent Vehicles Symposium. Las Vegas, USA, 2005: 583- 587.
  • 6SU Songzhi, CHEN Shuyuan, LI Shaozi, et al. Structured local edge pattern moment for pedestrian detection[C]//2010 International Conference on Image Analysis and Signal Processing. Xiamen, China, 2010: 556-560.
  • 7YU Liping, YAO Wentao, LIU Huaping, et al. A monocular vision based pedestrian detection system for intelligent vehicles[C]//2008 IEEE Intelligent Vehicles Symposium. Eindhoven, Netherlands, 2008: 524-529.
  • 8MAO Xin, QI Feihu, ZHU Wenjia. Multiple-part based pedestrian detection using interfering object detection[C]// Third International Conference on Natural Computation. Haikou, China, 2007:165-169.
  • 9SCHAULAND S, KUMMERT A, PARK S B, et al. Vision-based pedestrian detection: improvement and verification of feature extraction methods and SVM-based classification[C]//2006 IEEE Intelligent Transportation Systems Conference. Toronto, Canada, 2006: 97-102.
  • 10MUNDER S, SCHNORR C, GAVR/LA D M. Pedestrian detection and tracking using a mixture of view-based shape-texture models[J]. IEEE Transactions on Intelligent Transportation Systems, 2008, 9(2): 333-343.

二级参考文献23

  • 1彭宁嵩,杨杰,刘志,张风超.Mean-Shift跟踪算法中核函数窗宽的自动选取[J].软件学报,2005,16(9):1542-1550. 被引量:165
  • 2李培华.一种改进的Mean Shift跟踪算法[J].自动化学报,2007,33(4):347-354. 被引量:53
  • 3王科俊,侯本博.步态识别综述[J].中国图象图形学报,2007,12(7):1152-1160. 被引量:44
  • 4Comaniciu D, Ramesh V, Meer P. Kernel-based object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(5): 564-577.
  • 5Collins R T. Mean-shift blob tracking through scale space. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Madison Wisconsin, USA: IEEE, 2003. 234-240.
  • 6Yilmaz A. Object tracking by asymmetric kernel mean shift with automatic scale and orientation selection. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, USA: IEEE, 2007. 1-6.
  • 7Yang C J, Duraiswami R, Davis L S. Efficient mean-shift tracking via a new similarity measure. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. San Diego, USA: IEEE, 2005. 176-183.
  • 8Lowe D G. Distinctive image features from scale-invariant key-points. International Journal of Computer Vision, 2004, 60(2): 91-110.
  • 9Dalai N, Triggs B. Histograms of oriented gradients for human detection. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. San Diego, USA: IEEE, 2005. 886-893.
  • 10Comaniciu D, Meer P. Mean shift: a robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5): 603-619.

共引文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部