期刊文献+

常值利息力模型下破产概率的渐进估计 被引量:3

The Asymptotic Estimate of Ruin Probabilities in the Risk Model with Constant Force of Interest
下载PDF
导出
摘要 本文研究一类具有常值利息力风险模型破产概率的渐进估计,对于理赔为若干重尾族类的情形,通过考虑理赔来到时刻的盈余,将盈余过程离散化,进而利用更新函数和卷积,得到了当盈余趋向于无穷大时有限时间内破产概率的渐进估计。 In this paper,we consider the estimate of ruin problems in the risk model with constant force of interest.The asymptotic behavior of absolute ruin probability is investigated by applying the method called "skeleton process",then use the method of renewal function and convolution,we present the asymptotic properties of ruin probability when the initial surplus tends to infinity.
作者 王晶晶
出处 《安庆师范学院学报(自然科学版)》 2012年第1期30-32,46,共4页 Journal of Anqing Teachers College(Natural Science Edition)
基金 国家自然科学基金(10901003)资助
关键词 破产概率 常值利息力 风险模型 渐进估计 ruin probability constant force of interest risk model asymptotic estimate
  • 相关文献

参考文献9

  • 1Kai Sundt B,Teugels J L.Ruin estimate under interest force[J].Mathematics and Economics.,1995,16:7-22.
  • 2Kai W.NG,Tang,Q.The probabilities of absolute ruin in the renewal risk model with constant force of interest[J].Appl.Prob.,2010,47:323-334.
  • 3Tang,Q.On convolution equivalence with applications[J].Bernoulli,2006,171-188.
  • 4Tang,Q,Tsitsiashvili G.Degeneracy properties of subcritical branching processes[J].Ann.Prob.2003,171-188.
  • 5Chover,J,Ney,P.Banach algebras of measures on the line with given asymptotics of distributions at infinity[J].Siberian Math.1999,40:565-576.
  • 6Ross,S.M..Stochastic Processes[M].John Wiley,New York,1983.
  • 7Chover,J.,Ney,P,Degeneracy properties of subcritical branching processes[J].Ann.Prob.2003,1:663-673.
  • 8吴荣,杜勇宏.常利率下的更新风险模型[J].工程数学学报,2002,19(1):46-54. 被引量:30
  • 9陈昱,苏淳.有利息力情形下的有限时间破产概率[J].中国科学技术大学学报,2006,36(9):909-916. 被引量:7

二级参考文献18

  • 1[1]Delbaen F,Haezendonck J. Classical risk theory in an economic environment[J]. Insurance:Mathematics and Economics,1987;6:85-116
  • 2[2]Dickson D C M,dos Reis A D E. Ruin problems and dual events[J]. Insurance:Mathematics and Economics,1994;14:51-60
  • 3[3]Dufresne F,Gerber H U. The surplusimmediately before and at ruin, and the amount of the claim causing ruin[J]. Insurance:Mathematics and Economics ,1988;7:193-199
  • 4[4]Gerber, Goovaerts,Kass. On the probability and severity of ruin[J]. ASTIN Bulletin 1987;17:151-163
  • 5[5]Sundt B,Teugels J L. Ruin estimates under interest force[J]. Insurance:Mathematics and Economics 1995;16:7-22
  • 6[6]张丽宏. Ruin theory under compound poisson model with constant interest force[D]. 博士论文,2001
  • 7劳斯SM 何声武 译.随机过程[M].北京:中国统计出版社,1997..
  • 8Sundt B,Teugels J L.Ruin estimates under interest force[J].Insurance:Mathematics and Economics,1995,16:7-22.
  • 9Klüppelberg C,Stadtmüller U.Ruin probabilities in the presence of heavy-tails and interest rates[J].Scand.Actuar.J.,1998,(1):49-58.
  • 10Asmussen S.Subexponential asymptotics for stochastic processes:extremal behavior,stationary distributions and first passage probabilities[J].Ann.Appl.Probab.,1998,8(2):354-374.

共引文献33

同被引文献20

  • 1刘家军,张宇山,刘再明.批量索赔、保费到达均为更新过程的风险模型[J].安庆师范学院学报(自然科学版),2004,10(3):60-63. 被引量:2
  • 2WANGYuebao,YANGYang.THE STRUCTURE AND PRECISE MODERATE DEVIATIONS OF RANDOM VARIABLES WITH DOMINATEDLY VARYING TAILS[J].Journal of Systems Science & Complexity,2005,18(2):224-232. 被引量:3
  • 3汪春华.一类带常利率的更新过程[J].宁波职业技术学院学报,2007,11(5):6-9. 被引量:1
  • 4TANG Q H. Heavy Tails of Discounted Aggregate Claims in the Continuous-time Renewal Model[J]. Journal of Applied Probability, 2007, 44(2): 285-294.
  • 5HAO X M, TANG Q H. A Uniform Asymptotic Estimate for Discounted Aggregate Claims with Subexponential Tails[J]. Insurance: Mathematics and Economics, 2008, 43(1): 116-120.
  • 6WANG K Y, WANG Y B, GAO Q w. Uniform Asymptofics for the Finite-time Ruin Probability of a Dependent Risk Model with a Constant Interest Rate [ J ]. Methodology and Computing in Applied Probability, 2013, 15(1): 109-124.
  • 7LIU L. Precise Large Deviations for Dependent Random Variables with Heavy Tails[J]. Statistics & Probability Letters, 2009, 79(9): 1290-1298.
  • 8TANG Q H. Insensitivity to Negative Dependence of the Asymptotic Behavior of Precise Large Deviations [J ]. Electronic Journal of Probability, 2006, 1 h 107-120.
  • 9JIANG T, CUI S, MING R X. Large Deviations for the Stochastic Present Value of Aggregate Claims in the Renewal Risk Model[J]. Statistics & Probability Letters, 2015, 10h 83-91.
  • 10江涛.正则变化场合常数利息力度的破产概率[J].数学的实践与认识,2008,38(8):46-50. 被引量:1

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部