期刊文献+

基于产品分类的协同过滤算法应用研究 被引量:2

PRODUCT TAXONOMY BASED COLLABORATIVE FILTERING ALGORITHM APPLICATION RESEARCH
下载PDF
导出
摘要 为了解决稀疏性问题和可扩展性问题,提高推荐的质量,在传统协同过滤算法的基础上,引入产品分类技术与Web使用挖掘技术。在详细阐述算法的基础上,通过实验数据验证该算法的推荐性能。实验结果表明,引入产品分类和Web使用挖掘技术后,协同过滤算法的性能有了显著的提高,很好地改善了其稀疏性问题和可扩展性问题。 In order to remedy the sparsity and scalability weaknesses and improve the recommendation quality,based on conventional collaborative filtering algorithms,product taxonomy and web usage mining technologies are introduced.After elaborating the algorithm in detail,with experimental data the algorithm's recommendation performance is validated.Experiment results show that the performance of collaborative filtering algorithm is significantly improved and meanwhile the sparsity and scalability weaknesses are greatly remedied by the utilization of product taxonomy and web usage mining technologies.
作者 王松 徐德华
出处 《计算机应用与软件》 CSCD 北大核心 2012年第4期183-185,191,共4页 Computer Applications and Software
关键词 协同过滤 推荐系统 WEB使用挖掘 聚类分析 Collaborative filtering Recommendation system Web usage mining Cluster analysis
  • 相关文献

参考文献12

  • 1郁雪,李敏强.一种有效缓解数据稀疏性的混合协同过滤算法[J].计算机应用,2009,29(6):1590-1593. 被引量:6
  • 2许海玲,吴潇,李晓东,阎保平.互联网推荐系统比较研究[J].软件学报,2009,20(2):350-362. 被引量:545
  • 3丛晓琪,杨怀珍,刘枚莲.基于时间加权的协同过滤算法研究[J].计算机应用与软件,2009,26(8):120-121. 被引量:12
  • 4Sarwar B,Karypis G,Konstan J A. Itam-Based collaborative filtering recommendation algorithms[A].2001.285-295.
  • 5Hung L P. A personalized recommendation system based on product taxonomy for one-to-one marketing online[J].Expert Systems with Applications,2005,(01):383-392.
  • 6Cho Y H,Kim J K. Application of Web usage mining and product taxonomy to collaborative recommendation in e-commence[J].Expert Systems with Applications,2004,(02):233-246.
  • 7Araya S,Silva M,Weber R. A methodology for Web usage mining and its application to target group identification[J].Fuzzy Sets and Systems,2004,(01):139-152.
  • 8Adomavicius G,Tuzhilin A. Expert-driven validation of rule-based user models in personalization[J].Data Minin8 and Knowledge Discovery,2001,(1-2):33-58.
  • 9Han J,Fu Y. Mining multiple-level association rules in large databases[J].IEEE Transactions on Knowledge and Data Engineering,1999,(05):798-804.
  • 10Han J,Fu Y. Dynamic generation and refinement of concept hierarchies for knowledge discovery in databases[A].1994.157-168.

二级参考文献105

共引文献733

同被引文献30

  • 1申广荣,黄丹枫.基于HACCP的出口蔬菜安全生产智能决策支持系统研究[J].农业网络信息,2005(11):18-20. 被引量:16
  • 2PALLA G, DERENYI I, FARKAS I. Uncovering the overlapping community structures of complex networks in nature and society [ J]. Nature, 2005, 435(7043): 814-818.
  • 3LANCICHINETYI A, FORTUNATO S, KERTESZ J. Detecting the overlapping and hierarchical community structure in complex net- works [J]. New Journal of Physics, 2009, 11(3): 033015.
  • 4JIN D, YANG B, BAQUERO C. A Markov random walk under con- straint for discovering overlapping communities in complex networks [J]. Journal of Statistical Mechanics: Theory and Experiment, 2011:P05031.
  • 5LEE C, REID F, MCDAID A. Detecting highly overlapping com- munity structure by greedy clique expansion [ C]// Proceedings of the 4th International Workshop on Social Network Mining and Analy- sis. New York: ACM, 2010:33-42.
  • 6ZHENG Z B, MA H, LYU M R, et al. QoS-aware Web service rec- ommendation by collaborative filtering [ J]. IEEE Transactions on Services Computing, 2011,4(2) : 140 - 152.
  • 7WU J, CHEN L, FENG Y P, et al. Predicting quality of service for selection by neighborhood-based collaborative filtering [ J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2013, 43(2): 428-439.
  • 8LIU Q, CHEN E H, XIONG H, et al. Enhaneing collaborative fil- tering by user interest expansion via personalized ranking[ J]. IEEE Transactions on Systems, Man, and Cybernetics - Part B: Cyber- netics, 2012, 42(1): 218-232.
  • 9KWON H-J, HONG K-S. Personalized smart TV program recom- mender based on collaborative filtering and a novel similarity meth- od [ J]. IEEE Transactions on Consumer Electronics, 2011, 57 (3): 1416-1423.
  • 10LIM S L, FINKELSTEIN A. StakeRare: using social networks and col- laborative filtering for large-scale requirements elicitation[ J]. IEEE Transactions on Software Engineering, 2012, 38(3):707- 735.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部