期刊文献+

一种改进的关联规则的增量式更新算法 被引量:9

AN IMPROVED INCREMENTAL UPDATING ALGORITHM FOR ASSOCIATION RULES
下载PDF
导出
摘要 增量关联规则挖掘的主要思想是在原有规则的基础上,去除那些不满足条件的旧规则,发现满足条件的新规则,目的是尽量减少计算量。增量规则算法主要解决两类问题,即最小支持度的更新和数据库的更新。目前大多数算法对上述两个条件只更新其中一个,另一个保持不变,而实际应用中往往需要两者都更新。通过对数据挖掘中的IUA算法和FUP算法的分析和研究,提出IFU算法,用于解决数据库和最小支持度均发生改变时关联规则的增量式更新问题。相对于IUA算法和FUP算法以及基于他们改进的算法,该算法不仅扩展了更新条件,而且减少了对事务数据库和新增数据库的扫描次数。模拟实验表明IFU算法提高了更新效率。 The main idea of the incremental association rules for mining are to base on original rules to eliminate those old rules that do not meet conditions and to find the new rules that meet conditions.Their purpose is to minimize the amount of calculation.The incremental rule algorithm mainly solves two problems:the minimum support degree update and the database update.At present most algorithms update only one of the above while keeping the other one intact.In practice,usually both of them should be updated.By analyzing and studying IUA algorithm and FUP algorithm in data mining,the paper presents IFU algorithm to solve the incrementally update problem when both the database and the minimum support degree are modified.Compared with IUA algorithm,FUP algorithm as well as their improved algorithms,IFU algorithm not only extends the updating conditions,but also reduces the scanning times for both the transactional database and the newly added database.Simulation experiment shows that IFU algorithm improves the update efficiency.
出处 《计算机应用与软件》 CSCD 北大核心 2012年第4期246-248,共3页 Computer Applications and Software
关键词 数据挖掘 关联规则 增量式更新 Data mining Association rule Incremental updating
  • 相关文献

参考文献5

  • 1冯玉才,冯剑琳.关联规则的增量式更新算法[J].软件学报,1998,9(4):301-306. 被引量:227
  • 2Cheung D W. Maintenance of discovered Association Rules in Large Databases:An Incremental Updating Techniques[A].New Orlean,1998.
  • 3兰天.一种关联规则增量更新算法[D]西安:西安科技大学,2008.
  • 4Gharib T F,Nassar H,Taha M. An Efficient Algorithm for Incremental Mining Association Rules[J].Date & Knowledge Engineering,2010,(08):198-202.
  • 5Chen Yi,Yu Xin. Incremental updating Algorithm Based on IUA Algorithm for Mining Association Rules[A].Hubei:Wuhan University Press,2009.

共引文献226

同被引文献63

  • 1李松生,赵燕伟,顾熙仁.改进的FUP算法在五金产品质量分析系统中的应用[J].吉林大学学报(工学版),2012,42(S1):251-254. 被引量:1
  • 2徐文拴,辛运帏.一种改进的关联规则维护算法[J].计算机工程与应用,2006,42(18):178-180. 被引量:9
  • 3杨学兵,安红梅.一种高效的关联规则增量式更新算法[J].计算机技术与发展,2007,17(1):108-110. 被引量:5
  • 4D.W.Cheung, J.Han, V.T.Ng. Maintenance of Discovered Association Rules in Large Databases: An Incremental Updating Tech- nique[C].Proceedings of the 12th international conference on Data Engineering, 1996:212-223.
  • 5T.F.Gharib, M.Taha, and H.Nassar, "An efficient technique for incremental updating of association rules. " International Journal of Hybrid Intelligent Systems,pages 45-53,May 2008.
  • 6YE Y B,CHIANG C C. A parallel apriori algorithm for frequent item sets mining[A].2006.87-94.
  • 7刘鹏.云计算[M]北京:电子工业出版社,2010.
  • 8Dean Jeffrey,Ghemawat Sanjay. MapReduce:Simplified data processing on large clusters[J].Communications of the ACM,2008,(01):107-113.
  • 9Malewicz Grzegorz,Austern Matthew H,Bik Art J C. Pregel:A system for large-scale graph processing[A].2010.135-145.
  • 10Ching Avery. Giraph:Large-scale graph processing infrastruction on Hadoop[A].2011.

引证文献9

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部