期刊文献+

基于直方图和模糊C均值的彩色图像分割方法 被引量:5

COLOUR IMAGE SEGMENTATION ALGORITHM BASED ON HISTOGRAM AND FUZZY C-MEANS
下载PDF
导出
摘要 提出一种基于HSV空间的直方图和模糊C均值(FCM)相结合的彩色图像分割算法。首先将彩色图像转化到HSV空间,考虑到该空间的奇异性,把图像中的像素点根据饱和度和亮度划分为奇异点和非奇异点,然后对非奇异点建立3D HSV颜色直方图,并用爬山算法筛选出峰值进行像素点FCM聚类,对奇异点则建立1D灰度直方图,筛选出峰值进行直方图FCM聚类,最后合并两种分割结果。实验结果表明,该方法对彩色图像能够有效地提取目标物体,具有一定鲁棒性。 A novel segmentation algorithm of colour image based on the combination of histogram and fuzzy C-means in HSV colour space is proposed in this paper.Firstly the colour image is transformed into HSV space,and considering the singular property of this space,image pixels are divided into singular and non-singular points according to their saturation and intensity.For non-singular points,the 3D HSV colour histogram is built up,and the peaks are screen out using hill-climbing algorithm for pixels FCM clustering;for singular points,the 1D gray histogram is built up,and the peaks are screen out for histogram FCM clustering.Finally,the previous results of segmentation are merged together.Experimental results show that this method can effectively extract colour image of the object and have certain robustness.
出处 《计算机应用与软件》 CSCD 北大核心 2012年第4期256-259,265,共5页 Computer Applications and Software
基金 校世博专项(SK201053) 校基金项目(SK201028)
关键词 彩色图像分割 奇异点 FCM聚类 直方图 爬山算法 Colour image segmentation Singular point FCM clustering Histogram Hill-climbing algorithm
  • 相关文献

参考文献6

  • 1黄春艳,杨国胜,侯艳丽.基于颜色直方图和空间信息融合的图像分割算法[J].计算机工程与应用,2005,41(3):85-87. 被引量:19
  • 2张晓芸,朱庆生.基于KL变换的模糊C-均值聚类彩色图像分割[J].计算机科学,2006,33(4):218-220. 被引量:5
  • 3Khang Siang Tan,Nor Ashidi Matisa. Color image segraentation using histogram thresholding-Fuzzy C-means hybrid approach[J].Pattern Recognition,2011.1-15.
  • 4Foley J D,Van Dam A,Feiner S K. Computer graphics:principles and practice in C[M].Boston:Addison-wesley,2004.
  • 5Ohashi T,Achbari Z,Makinouchi A. Hill-climbing algorithm for efficient color-based image segmentation[A].Rhodesk,Greece,2003.
  • 6Cheng Hengda,Sun Ying. A hierarchical approach to color image segmentation using homogeneity[J].IEEE Transactions on Image Processing,2000,(12):2071-2082.

二级参考文献20

  • 1Lee J H,Chang B H,Kim S D.Comparison of color transformations for image segmentation[J].IEEE Electronics Letters, 1994;30(20):1660~1661.
  • 2Gonzalez R C,Woods R E.Digital Image Processing[M].3rd,AddisonWesley Publishing Company, 1992.
  • 3Chun-Ming Tsai,His-Jian Lee. Binarization of Color Document Images via Luminance and Saturation Color Features[J].IEEE Transactions on Image Processing,2002;11(4):434~451.
  • 4Young Won Lim,Sang Uk Lee. On the Color Image Segmentation Algorithm based on the Thresholding and the Fuzzy c-Mean Techniques[J].Pattern Recognition, 1990;23(9) :935~952.
  • 5Yining Deng,Member IEEE,B S Manjunath. Unsupervised Segmentation of Color-Texture Regions in Images and Video[J].IEEE Transaction PAMI,2001 ;23(8) :800~810.
  • 6C C Chang,L L Wang. A fast multilevel thresholding method basedon low-pass and high-pass filtering[J].Pattem Recognition Lett,1997;18:1469~1478.
  • 7D M Tsai.A fast thresholding selection procedure for multimode and unimodel histograms[J].Pattern Recognition Lett, 1995;16:653~666.
  • 8R Haralick,L Shapiro. Image segmentation techniques[J].Joumals of Computer Vision,Graphics, and Image processing, 1985; 29:100~132.
  • 9Pham T D.Image Segmentation using Probabilistic Fuzzy C-Means Clustering[C].In:Proceedings of International Conference on Image processing, 2001;21(3):722~725.
  • 10M P Windham. Clustering validity for the fuzzy c-means clustering algorithm[J].IEEE Trans Pattern Anal Mach Intell, 1982; PAMI-4:357~363.

共引文献22

同被引文献57

引证文献5

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部