期刊文献+

Mn掺杂ZnS(110)表面的电子结构和磁性 被引量:9

Structural,Electronic,and Magnetic Properties of Mn-doped ZnS(110) Surfaces:First-principles Study
下载PDF
导出
摘要 采用基于密度泛函理论的第一性原理方法,研究Mn掺杂ZnS(110)表面的电子结构和磁性.计算分析不同掺杂组态的几何参数、形成能、磁矩、电子态密度以及电荷密度.结果表明:单个Mn原子掺杂,替位于表面第二层的Zn原子时体系形成能最低,说明该层是最稳定的掺杂位置.对于两个Mn原子的掺杂,当Mn与Mn之间呈反铁磁耦合时体系最稳定.体系的总磁矩和自由Mn原子的磁矩差别很小,但是Mn原子的局域磁矩却依赖于Mn原子的3d态和近邻S原子的3p态的杂化作用,即受周围S原子环境的变化影响较大.此外,分析电荷密度图得出Mn原子替换Zn原子后与S原子形成了更强的共价键. Structural,electronic,and magnetic properties of Mn-doped ZnS(110) surfaces are investigated with first-principles method.Geometric parameters,formation energies,magnetic moments,density of states,and electron charge densities are studied.It shows that the lowest formation energy is as a Mn atom doped into the second layer,which indicates that this layer is more stable for Mn-doping.For bidoped case,the most stable configuration is an antiferromagnetic state of two Mn atoms.Total magnetic moments is equal to that of a free Mn atom.The local magnetic moment of Mn atom depends on a hybridization of Mn 3d state and its neighboring S 3p state,that is to say,magnetic moment changes as environment of S atoms alters.Furthermore,electron charge density shows that intensity of covalent bond between Mn and S atoms is greater than that between Zn and S atoms.
出处 《计算物理》 EI CSCD 北大核心 2012年第2期277-284,共8页 Chinese Journal of Computational Physics
基金 国家自然科学基金(60776039 604006005) 北京市自然科学基金(3062016) 北京交通大学基金资助项目
关键词 ZnS(110)表面 MN掺杂 第一性原理 稀磁半导体 ZnS(110) surface Mn-doping first-principles diluted magnetic semiconductor
  • 相关文献

参考文献3

二级参考文献34

  • 1郭旭光,陈效双,孙沿林,周孝好,孙立忠,陆卫.(Ga,Mn)As体系中Mn自补偿效应的第一性原理研究[J].物理学报,2004,53(10):3545-3549. 被引量:7
  • 2王友贵,黄世华,靳春明,吕少哲,虞家琪.简并四波混频信号的饱和效应[J].发光学报,1995,16(1):27-32. 被引量:1
  • 3李标,褚君浩,常勇,桂永胜,汤定元.Hg_(1-x)Cd_xTe禁带以上的本征光吸收[J].物理学报,1996,45(5):747-753. 被引量:1
  • 4Shim M,Guyot-Sionnest.n-type colloidal semiconductor nanocrystals[J].Nature,2005,407:981 -983.
  • 5Hoffman D M,Meyer B K,Ekimovha I,Merkulovi A,et al.Giant internal magnetic fields in Mn doped nanocrystal quantum dots[J].Solid State Commun,2000,114:547-550.
  • 6Efros AI L,Rashba E I,Rosen M.Paramagnetic ion-doped nanocrystal as a voltage-controlled spin filter[J].Phys Rev Lett,2001,87:206601-206604.
  • 7Levy L,Hochepied J F,Pileni M P.Control of the size and composition of three dimensionally diluted magnetic semiconductor clusters[J].J Phys Chem,1996,100:18322-18326.
  • 8Suyver J F,Wuister S F,Kelly J J,Meijerink A.Luminescence of nanocrystalline ZnSe:Mn^2+[J].Phys Chem Chem Phys,2000,2:5445-5448.
  • 9Erwin S C,Zu L,Haftel M I,Efros A L,Kennedy T A,Norris D J.Doping semiconductor nanocrystals[J].Nature,2005,436:91-94.
  • 10Tejinder Singh,Moontziaris T J,Dimitrios Maroudas.First-principles theoretical analysis of dopant adsorption and diffusion on surfaces of ZnSe nanocrystals[J].Chemical Physics Letters,2008,462:265-268.

共引文献34

同被引文献57

引证文献9

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部