期刊文献+

算子AB值域的闭性

The closeness of range of operator AB
下载PDF
导出
摘要 目的在算子A,B值域闭的条件下,讨论2个算子的乘积AB值域闭的充要条件,其中A,B是作用在Hilbert空间H上的有界线性算子。方法利用算子分块的技巧。结果与结论得出了AB值域闭的3个充要条件,并给出了证明。 Aim To discuss the sufficient and necessary conditions for the closed range of operator AB when the ranges of operators A and B are closed, and operators A and B are bounded linear operators on a Hilbert space H. Methods The technique of block operator matrix is used. Result and Conclusion Three sufficient and necessary conditions for the closed range of operator AB are obtained and the proofs are given.
作者 许俊莲
出处 《宝鸡文理学院学报(自然科学版)》 CAS 2012年第1期30-31,35,共3页 Journal of Baoji University of Arts and Sciences(Natural Science Edition)
基金 宝鸡文理学院重点科研项目(ZK11132)
关键词 值域 MOORE-PENROSE逆 算子矩阵 正交投影 range Moore-Penrose inverse operator matrix orthogonal proiection
  • 相关文献

参考文献11

  • 1Richard Bouldin. The product of operators with closed range[J].Tohoku Mathematical Journal,1973,(03):359-363.
  • 2Richard Bouldin. Closed range and relative regularity for products[J].Journal of Mathematical Analysis and Applications,1977,(02):397-403.
  • 3LI Yuan. The Moore-Penrose inverses of products and differences of projections in a C"-algebra[J].Linear Algebra and Its Applications,2008,(04):1169-1177.
  • 4SHARIFI K. The product of operators with closed range in Hilbert C"-modules[J].Linear Algebra and Its Applications,2011,(05):1122-1130.
  • 5许俊莲,杜鸿科.1×2算子矩阵的Moore-Penrose逆[J].陕西师范大学学报(自然科学版),2008,36(2):11-14. 被引量:4
  • 6许俊莲,杜鸿科.算子方程AXA^*=B的解[J].西安文理学院学报(自然科学版),2008,11(2):7-9. 被引量:6
  • 7许俊莲.算子方程AX=XAX的解[J].宝鸡文理学院学报(自然科学版),2010,30(3):6-8. 被引量:3
  • 8BHATIA R. Matrix Analysis[M].New York:springer-verlag,1997.
  • 9CONWAY J B. A Course in Functional Analysis[M].New York:springer-verlag,1990.
  • 10Ben-Israel A. The Moore of the Moore-Penrose inverse[J].Electronic Journal of Linear Algebra,2002.150-157.

二级参考文献24

  • 1ARONSZAJN N, SMITH K T. Invariant subspaces of completely continuous operators [J]. Annals of Mathematics, 1954, 60: 345-350.
  • 2HOLBRLLK J, NORDREN F, RADJARI H, et al. On the operator equation AX = XAX I-J]. Linear Algebra and its Applications, 1999, 295 113-116.
  • 3CONWAY J B. A Course in Functional Analysis [M]. New York: Springer-Verlag, 1990.
  • 4CLINE R E. Representations for the generalized inverse of a partitioned matrix[J], Journal of the Society for Industrial and Applied Mathematics, 1964, 12: 588-600.
  • 5Israel A B, Greville T N E. Generalized inverse: theory and applications[M].2nd ed. New York: Springer-Verlag, 2003.
  • 6Israel A B. The Moore of the Moore-Penrose inverse[J ]. Linear Algebra (Electron), 2002, 9: 150-157.
  • 7Cegielsld A. Obtuse cones and Gram matrices with nonnegative inverse[J]. Linear Algebra and its Applications, 2001, 335: 167-181.
  • 8Moore E H. On the reciprocal of the genera algebraicmatrix[J ]. Bulletin of the American Mathematical Societv, 1920, 26: 394-395.
  • 9Penrose R, A generalized inverse for matrices[J].Mathematical Proceedings of the Cambridge Philosophical Society, 1955, 51:406-413.
  • 10Baksalary J. K, Baksalary O. M. Particular formulae for the Moore-Penrose inverse of a columnwise partitiones matrix[J].Linear Algebra and its Applications, 2007,421:16-23.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部