摘要
利用Banach空间中的不动点指数理论,并结合锥理论和Leray-Schauder度理论,对一类非线性算子方程建立了多重变号解存在性定理,然后将所获结论应用到含多个脉冲情形的微分方程两点边值问题上,得到了多个变号解存在的结论.
Using fixed point index theory in Banach space,cone theory,and Leray-Schauder degree theory,the existence and multiplicity of signchanging solutions for a class of nonlinear operator equations was studied.By applying the above conclusions in impulsive differential equations for two-point boundary value problems with multiple pulses,the existence of sign-changing solutions was proved.
出处
《中北大学学报(自然科学版)》
CAS
北大核心
2012年第1期21-24,共4页
Journal of North University of China(Natural Science Edition)
基金
国家自然科学基金资助项目(10771105)
长治学院科研资助项目(2011113)
关键词
脉冲微分方程
变号解
强正线性算子
不动点指数
impulsive differential equation
sign-changing solutions
strong positive linear operator
fixed point index