期刊文献+

一类多参数递归分形插值曲面 被引量:1

A Class of Recurrent Fractal Interpolation Surfaces with Multi-Parameters
下载PDF
导出
摘要 给出了三维空间上的递归迭代函数系,进而由该递归迭代函数系构造了一类多参数递归分形插值曲面.与由传统的迭代函数系所构造的自仿射分形插值曲面相比,这种曲面在模拟自然界不规则物体形状和压缩成像方面具有更灵活的应用.在一定的条件下,证明了这类递归迭代函数系的吸引子是经过给定插值点集的连续的分形插值曲面. Recurrent iterated function systems in the three-dimensional space were introduced,from which,a class of recurrent fractal interpolation surfaces with multi-parameters were constructed.These surfaces,compared with self-affine fractal interpolation surfaces being constructed by the traditional iteration function system,can be more flexibly applied in simulating irregular object shape and image compression.It is proved that,under certain conditions,the class of recurrent iteration function system attractors are continuous curved surfaces passing through the given interpolation points.
出处 《中北大学学报(自然科学版)》 CAS 北大核心 2012年第1期52-55,共4页 Journal of North University of China(Natural Science Edition)
关键词 递归迭代函数系 吸引子 递归分形插值函数 多参数 recurrent iterated function system attractor recurrent fractal interpolation surface multi-parameters
  • 相关文献

参考文献1

二级参考文献7

  • 1王宏勇.一类具有双参数的迭代函数系及其吸引子[J].厦门大学学报(自然科学版),2007,46(2):157-160. 被引量:11
  • 2Barnsley M F. Fractal functions and interpolation[ J]. Constr Approx, 1986,2:303 - 329.
  • 3Feng Z, Xie H. On stability of fractal interpolation [ J ]. Fractals, 1998,6 (3) :269 -273.
  • 4Ruan H J, Sha Z, Su W Y. Counterexamptes in parameter identification problem of the fractal interpolation functions [ J ]. J Approx Theory ,2003,122 : 121 - 128.
  • 5Wang H Y, Li X J. Perturbation error analysis for fractal interpolation functions and their moments [ J ]. Appl Math Lett,2008,21:441 -446.
  • 6Dalla L. Bivariate fractal interpolation functions on grids [ J ]. Fractals ,2002,10( 1 ) :53 -58.
  • 7Wang H Y. On smoothness for a class of fractal interpolation surfaces [ J ]. Fractals ,2006,14 (3) :223 -230.

共引文献3

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部