期刊文献+

熵值距离的离群点检测及其在学生评教中的应用

Entropy Distance-Based Outlier Detection and Its Application in Student Ratings of Teaching Effectiveness Evaluation
下载PDF
导出
摘要 离群数据检测是找出与正常数据不一致的数据。学生评教中由于某种原因,会出现一些评教噪声数据。针对学生评教中噪声数据的特征,提出了一个基于熵值距离的离群点检测算法,该算法通过比较每个数据点所对应的熵值和整个数据集的熵值,来判断数据点的离群程度。仿真结果表明该算法对学生评教中出现的噪声数据具有较好的过滤效果。 Outlier detection is to identify the inconsistent data that is different to the normal data.For some reason,there will be some noise data in the student ratings of teaching evaluation.Based on the characteristics of noise data in teaching evaluation,this paper proposes an entropy distance-based outlier detection algorithm.The algorithm by comparing the entropy between each data corresponding to and the entire data set judges the degree of outlier data.Simulation results show that the algorithm appears to have a good filtering effect to noise data in student ratings of teaching effectiveness evaluation.
作者 刘祥新
出处 《湖北第二师范学院学报》 2012年第2期84-86,共3页 Journal of Hubei University of Education
关键词 离群点 学生评教 信息熵 outlier student ratings of teaching effectiveness information entropy
  • 相关文献

参考文献8

二级参考文献30

  • 1杨新宇,曾明,赵瑞,吴航.分形理论在网络流量分析中的应用综述[J].计算机工程,2004,30(23):17-18. 被引量:2
  • 2张文泉,张世英,江立勤.基于熵的决策评价模型及应用[J].系统工程学报,1995,10(3):69-74. 被引量:80
  • 3Ramaswamy S,Rastogi R,Kyuseok S.Efficient Algorithms for Mining Outliers from Large Data Sets[C]//Proe.of 2000 ACM SIGMOD International Conference on Management of Data.Dallas,Texas,USA:[s.n.],2000:93-104.
  • 4Angiulli F,Pizzuti C.Outlier Mining in Large High-dimensional Data Sets[J].IEEE Tram.on Knowledge and Data Engineering,2005,17(2):203-215.
  • 5He Zengyou,Deng Shengchun,Xu Xiaofei.An Optimization Model for Outlier Detection in Categorical Data[C]//Proc.of 2005International Conference on Intelligent Computing.Hefei,China:[s.n.],2005:400409.
  • 6Aggarwal C C,Philip S Y.Outlier Detection for High-dimensional Data[C]//Proc.of 2001 ACM SIGMOD International Confcfence on Management of Data.Santa Barbara,USA:[s.n.],2001:37-46.
  • 7Cristofor D,Simovici D.Finding Median Paaitions Using Information Theoretical-based Genetic Algofithms[J].Journal of Universal Computer Science,2002,8(2):153-172.
  • 8Hawkins D.Identification of outliers[M].London:Chapman and Hall,1980.
  • 9Breunig M M,Kriegel H,Ng R T,et al.LOF:identifying density-based local outliers[C]//Proceedings of 2000 ACM SIGMOD International Conference on Management of Data.New York:ACM Press,2000:93 -104.
  • 10He Z,Xu X,Deng S.FP-outlier:frequent pattern based outlier detection[J].ComSIS,2005,2(1):103 -118.

共引文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部