期刊文献+

自组织小脑神经网络算法研究 被引量:2

Method of Self-organization CMAC Neural Network
下载PDF
导出
摘要 针对神经网络逼近非线性函数问题,提出一种在线的自组织小脑神经网络,其不需要预先确定存储空间的大小。该网络可以根据输入数据自适应地改变神经网络节点数和相对应的权值,具有良好的智能性;针对挠性卫星姿态控制,将自组织小脑神经网络用于不确定项的补偿中,提高系统的鲁棒性。仿真结果表明,该方法神经网络性能良好,实现了卫星姿态控制。 To solve the problem of neural network approaching non-liner function, a new on-line self-organization CMAC neural network is proposed,of which the memory need not to be predefined. The self-organization CMAC neural network can update structure and weights automatically. The paper use sliding mode control to solve the problem of attitude maneuvering of flexible satellite, using self-organization CMAC neural network to compensate the uncertainty. Practical example shows that the proposed approach applied to control the satellite and the network can provide zood performance.
出处 《无线电通信技术》 2012年第2期10-12,37,共4页 Radio Communications Technology
关键词 自组织小脑神经网络 非线性逼近 卫星姿态控制 self-organization CMAC neural network Non-liner function approaching satellite attitude maneuvering
  • 相关文献

参考文献7

  • 1CHIANG C T,LIN C S. CMAC with General Basis Functions[J].Neural Networks,1996,(07):1199-1211.
  • 2HU J,PRATT F. Self-organizing CMAC Neural Networks and Adaptive Dynamic Control[J].IEEE Intelligent Control,1999.259-265.
  • 3LEE H M,CHEN C M,LU Y F. A Self-organizing HCMAC Neural-network Classifier[J].IEEE Transactions,2003,(14):15-27.
  • 4LIN Chin-min,CHEN Te-yu. Self-Organizing CMAC Control for a Class of MIMO Uncertain Nonlinear Systems[J].IEEE Transactions on Neural Networks,2009.1377-1384.
  • 5ALEXANDRIDIS A,SARIMVEIS H,BAFAS G. A New Algorithm for Online Structure and Parameter Adaptation of RBF Networks[J].Neural Networks,2003.1003-1017.
  • 6QIN Ting,CHEN Zong-hai,ZHANG Hai-tao. A Learning Algorithm of CMAC Based on RLS[J].Neural Processing Leters,2004,(03):49-61.
  • 7李广兴,周军,周凤岐.挠性卫星高精度智能控制及物理仿真实验研究[J].中国空间科学技术,2007,27(1):9-13. 被引量:1

二级参考文献8

  • 1周军,李季苏,牟小刚,吴宏鑫.挠性卫星的变结构控制方案研究[J].宇航学报,1996,17(2):1-5. 被引量:11
  • 2高为炳 程勉 曾为林.柔性空间飞行器的变结构控制[J].航空学报,1983,9(5).
  • 3ALBUS J S. A New Approach to Manipulator Control:The Celebellar Model Articulation Controller(CMAC)[J]. Transactions of ASME, Journal of Dynamic Systems, Measurement and Control, 1975, 97 (3):220--227.
  • 4MILLER W T, GLANZ F H, KRAFT L G . Application of a General Learning Algorithm to the Control of Robotics Manipulators [J]. Int J Robotics Research, 1987, 2(6): 84--98.
  • 5PARK H J, CHO H S. CMAC-based Iteraticle Learning Control for Hydraulic Servo System [C]. Proceeding of Fluid Power Control and Robotics, Chengdu, 1990: 439--444.
  • 6KING LUNG HUANG, SHU CHENG HSTESH , HSIN CHINFU. Cascade-CMAC Neural Network Application on the Color Scan-nerto Printer Calibration [J]. Proceedings of the 1997 IEEE International Conference on Neural Networks, 1997: 10-- 15.
  • 7COMMURI S, LEWIS F L. Control of Unknown Nonlinear Dynamical Systems Using CMAC Neural Networks: Structure, Stability, and Passivity [J]. Proceedings of the 1995 IEEE International:Symposium on Intelligent Control, 1995. 123--129.
  • 8HORNIK K, STEINCHOMBE M, WHITE H. Multilayer Feedforword Networks are Universal Approximator[J]. Neural Networks, 1989, 2: 359--366.

同被引文献16

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部