期刊文献+

改进Min-sum的LDPC译码算法研究 被引量:3

Research on LDPC Decoding Based on Modified Min-sum Algorithm
下载PDF
导出
摘要 为了弥补Min-Sum译码算法相对于LLR-BP算法的性能缺陷,降低LLR-BP算法的实现复杂度,提出一种改进型Min-Sum译码算法,将Normalized BP-Based和Offset BP-Based 2种算法有效地结合,在计算校验节点消息时,同时引进校正因子和偏移因子,并通过最小均方差准则来选择参数。仿真结果表明,在误码率相同的条件下,改进型Min-Sum译码算法比Min-Sum算法、Normalized BP-Based算法和Offset BP-Based算法具有更好的译码性能,译码性能逼近于LLR-BP译码算法。 In order to make up for the performance defects of Min-sum decoding algorithm relative to LLR BP decoding algorithm and reduce implementation complexity of LLR-BP algorithm, a modified Min-sum decoding algorithm is proposed. When the check nodes process the message, parameters of the proposed algorithm are confirmed according to minimum mean square error rule, and the normalized BP-based decoding algorithm and the offset BP-based decoding algorithm are integrated effectively. At the same time, we introduce the correction factor and the offset factor into this algorithm reasonably. The simulation results show that decoding performance of modified Min-sum decoding algorithm is more effective than that of Min-sum decoding algorithm, normalized BP-based decoding algorithm and offset BP-based decoding algorithm under the same condition of bit error rate, and it approaches to the performance of LLR-BP decoding algorithm.
作者 吴琼 梅进杰
出处 《无线电通信技术》 2012年第2期27-29,51,共4页 Radio Communications Technology
关键词 LDPC码 TANNER图 Min—sum译码算法 最小均方误差 改进型Min—sum译码算法 LDPC codes Tanner graph Min-sum decoding algorithm minimum mean square error improved Min-sum decoding algorithm
  • 相关文献

参考文献5

  • 1GALLAGER R G. Low Density Parity Check Codes[J].IEEE Transactions on Information theory,1962,(05):208-220.
  • 2ZHANG H T,MOURA J M F. The Design of Structured Regular LDPC Codes With Large Girth[A].2003.4022-4024.
  • 3TIAN T,JONES C,VILLASENOR J D. Construction of Irregular LDPC Codes with Low Eroor Floors[J].IEEE Intl Conf Comm,2003.3125-3129.
  • 4TANNER R M. A Recursive Approach to Low Complexity Codes[J].IEEE Transactions on Information theory,1981,(05):533-547.
  • 5CHEN J H,EOSSORIER M P C. Density Evolution for BP-based Decoding Algorithm of LDPC Codes and Their Quantize Versions[J].Global Teleconference,2002,(02):1378-1382.

同被引文献29

  • 1GALLAGER R G. Low-Density Parity-Check Codes [C] //IRE Transactions on Information Theory, 1962 :21 - 28.
  • 2RICHARDSON T J,SHOKROLLAHI M A,URBANKE RL. Design of Capacity-Approaching Irregular Low-DensityParity-Check Codes [ J]. IEEE Transactions on Informa-tion Theory ,2011 ,47 (2) :619 - 637.
  • 3MACKAY D J C,NEAL R M. Near Shannon Limit Per-formance of Low Density Parity Check Codes [ J] . Elec-tronics Letters, 1996 ,32 (18) :1 645 - 1 646.
  • 4Hu Xiaoyu,ELEFTHERIOU E,ARNOLD D M,et al.Efficient implementations of the sum-product algorithm for decoding LDPC codes[C].Global Telecommunications Conference,IEEE GLOBECOM(2),2001:1036-1036E.
  • 5PAPAHARALABOS P,MATHIOPOULOS P T.Simplified sum-product algorithm for decoding LDPC codes with optimal performance[J].Electronics Letters,2009,45(2):116-117.
  • 6Chen Jinghu,DHOLAKIA A,ELEFTHERIOU E,et al.Reduced-complexity decoding of LDPC codes[J].IEEE Transactions on Communications,2005,53 (8):1288-1299.
  • 7SHOKROLLAHI A. Raptor Codes [ R ]. Digital Fountain, Technical Report ,2003 : 1-37.
  • 8LUBY M, MITZENMACHER M, SHOKROLLAHI A.Prac- tical Loss-resilient Codes[ C ]// Proceedings of the 43rd Annual IEEE Symposium on the Foundations of Computer Science, 1997 : 150-159.
  • 9LUBY M.LT-codes[ C]// Proceedings of the 43rd Annual IEEE Symposium on the Foundations of Computer Science, 2002 : 271- 280.
  • 10LUBY M, MITZENMACHER M, SHOKROLLAHI A, et al.Efficient Erasure Correcting Codes[ J] .IEEE Transa- ction on Information Theory,2001,47(2) :569-584.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部