期刊文献+

基于多模态相关向量回归机的老年痴呆症临床变量预测 被引量:4

Predicting clinical variables in Alzheimer's disease based on multimodal relevance vector regression
下载PDF
导出
摘要 老年痴呆症(Alzheimer's disease,AD)的临床变量值和多模态特征都是对其内在致病病理的外在反映.本文提出一种多模态相关向量回归机,通过对多模态特征的学习来预测临床变量值.首先采用核方法将多模态数据融合成一个混合核矩阵,然后使用相关向量回归机对临床变量简易精神状态检查(mini mental state examination,MMSE)和老年痴呆症评定量表(Alzheimer's disease assessment scale,ADAS-Cog)建立回归模型,最后用相关系数和平方根均方误差来验证算法的性能.在标准数据集ADNI上的实验结果表明,本文提出的多模态方法的预测性能优于单模态方法. Recently, effective and accurate diagnosis disease stage of Alzheimer's disease (AD) or mild cognitive impairment (MCI) has attracted more and more attention. Numerous studies have demonstrated that clinical variables and multimodal features of AD are external reflections of the intrinsic disease pathology. This paper proposes a multimodal regression method for estimating disease stage and predicting clinical progression from three modalities of biomarkers, i. e., magnetic resonance imaging (MRI), fluoro-deoxy-glucose-positron emission tomography ( FDG-PET), and cerebrospinal fluid (CSF) biomarkers. Specifically, our multimodal regression framework includes three key steps: firstly, we use the specific application tool to orginal MRI and FDG-PET images data from the 202 Alzheimer' s disease neuroimaging initiative(ADNI) subjects. For each preproeessed original MR or FDG PET image, 93 regions of interest (ROIs) are labeled by an atlas warping algorithm. And then, for each MR or FDG-PET image, 93 volumetric features are extracted from the 93 ROIs. Therefore, for each subject, the last features come from 93 features from the MRI image, another 93 features from the PET image, and 3 features from the CSF biomarkers which original values are directly used as features. Secondly, muhi-modal data (MRI, PET, and CSF) are fused into a mixed kernel matrix through the kernel method, and then regression model is constructed by the relevant vector machine regression (RVR) for the clinical variables including mini mental state examination(MMSE) and Alzheimer' s disease assessment scale(ADAS-Cog). Finally, our multimodal regression method compared with single-modal approaches and bimodal approaches. Moreover, the performance of our regression model is validated by the correlation coefficient (CORR) and the square root of the mean square error (RMSE). These regression experiment scheme are tested on the ADNI dataset by 10-fold cross-validation. Experimental results on the ADNI database show that the prediction performance of our multi-modal RVR approach is superior to the corresponding single-modal approaches and bimodal approaches.
作者 程波 张道强
出处 《南京大学学报(自然科学版)》 CSCD 北大核心 2012年第2期140-146,共7页 Journal of Nanjing University(Natural Science)
基金 南京航空航天大学基本科研业务费
关键词 多模态 老年痴呆症 相关向量回归机 简易精神状态检查 老年痴呆症评定量表 multimodal, Alzheimer's disease, relevance vector machine regression, mini mental state examination, Alzheimer's disease assessment scale
  • 相关文献

参考文献17

  • 1Ye J P,Chen K W,Wu T. Heterogene- ous data fusion for Alzheimer's disease study[M].Knowledge Discovery and Data Mining Confer- ence.ACM,2008.1025-1033.
  • 2Hinrichs C,Singh V,robust multi-modality Xu G. MKL for AD classification:Lee- ture Notes in Computer Science[J].Springer-Ver- lag,2009.786-794.
  • 3Davatzikos C,Fan Y,Wu X. Detection of prodromal Alzheimer' s disease via pattern classification of magnetic resonance imaging[J].Neurobiology of Aging,2008.514-523.
  • 4Batmanghelich N,Taskar B,Davatzikos C. A general and unifying framework for feature con struction, in image-based pattern classification[A].Springer-verlag,2009.423-434.
  • 5Davatzikosa C,Bhatt P,Shaw L M. Pre- diction of MCI to AD conversion, via MRI, CSF biomarkers, and pattern classification[J].Neurobi- ology of Aging,2011,(12):2322.e,19-2322.e27.
  • 6Zhang D Q,Shen D G. Semi-supervised multi modal classification of Alzheimer's disease[A].2011.1628-1631.
  • 7Zhang D Q,Wang Y,Zhou L. Multimo dal classification of Alzheimer' s disease and mild cognitive impairment[J].Neuroimage,2011,(03):856-867.
  • 8Filipovych R,Davatzikos C. Semi-supervised pattern classification of medical images:Appli- cation to mild cognitive impairment,(MCI)[J].Neuroimage,2011,(03):1109-1119.
  • 9Caselli R J,Dueck A C,Osborne D. Longitudinal modeling of age-related memory decline and the APOE epsilon4 effect[J].New England Journal of Medicine,2009.255-263.
  • 10Reiman E M,Chen K,Liu X. Fibrillar amyloid-beta burden in cognitively normal peo- ple at 3 levels of genetic risk for Alzheimer's disease[J].Proceedings of the National Academy of Sciences(USA),2009.6820-6825.

二级参考文献8

  • 1Chen R C, Yu P T. Fuzzy selection filters for image restoration with neural learning. IEEE Transactions of Signal Processing, 1999,47(5) :1 445-1 459.
  • 2Tsai H H, Yu P T. On the optimal design of fuzzy neural networks with robust learning for function approximation. IEEE Transactions on System Man and Cybernetics-Part B: Cybernetics, 2000,30(1) : 217-233.
  • 3David S C, Ramesh C J. A robust back propagation learning slgorithm for function approximation. IEEE Transactions on Neural Network,1994,3:467-479.
  • 4Lee C C. Robust radial basis function neural networks. IEEE Transactions on Systems, Man and Cybenetics, 1999,20(6):624-634.
  • 5Vapnik V. The nature of statistical learning theory. New York.. Springer Press, 1995,12.
  • 6Chuang C C. Robust support vector regression networks for function approximation with outliers. IEEE Transactions on Neural Networks,2002, 13(6):1 322-1 329.
  • 7Kivinen J, Smola A J, Williamson R C. Online learning with kenels. IEEE Transactions on Signal Precessing, 2004,52(8):2 165-2 176.
  • 8萧嵘,王继成,孙正兴,张福炎.一种SVM增量学习算法[J].南京大学学报(自然科学版),2002,38(2):152-157. 被引量:24

共引文献3

同被引文献42

  • 1马超群,兰秋军,陈为民.金融数据挖掘[M].北京:科学出版社,2006,202-203.
  • 2Tipping M E. Sparse Bayesian learning and the relevance vector machine[J]. Journal of Machine Learning Research, 2001,1(1):211-244.
  • 3沈泉波. 相关向量机在语音识别中的应用研究[D]. 太原:中北大学, 2013.
  • 4深圳市统计局. 深圳统计年鉴2012[EB/OL]. http://www.sztj.gov.cn/nj2012/start2012.htm, 2013-04-24.
  • 5冯新刚. 支持向量机核函数选择方法探讨[D]. 赣州:江西理工大学, 2012.
  • 6尹金良. 基于相关向量机的油浸式电力变压器故障诊断方法研究[D]. 北京:华北电力大学, 2013.
  • 7Kennedy J, Eberhart R. Particle swarm optimization[C]// Proceedings of IEEE International Conference on Neural Networks. 1995,4:1942-1948.
  • 8Brookmeyer R, Johnson E, Ziegler-Graham K, et al. Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement, 2007, 3(3): 186-191.
  • 9Petersen, R C, Doody R, Kurz A, et al. Current concepts in mild cognitive impairment. Archives of neurology, 2001, 58(12): 1985-1992.
  • 10Zhang D, Wang Y, Zhou L, et al. Multimodal classification of Alzheimer’s disease and mild cognitive impairment. Neuroimage, 2011, 55(3): 856-867.

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部