期刊文献+

基于线性神经网络的独立成分分析算法 被引量:1

Efficient independent component analysis algorithm using linear neural network
下载PDF
导出
摘要 基于概率密度非参数估计的广义高斯密度(GGD)核估计和线性独立成分分析(ICA)神经网络,本文提出了一种新的非参数ICA算法,实现了对源信号分布的全盲要求.该算法直接由观测信号样本出发,对分离信号评价函数直接估计,可以只用一种灵活评价函数分离任意的杂系混合信号,并且GGD核可以根据源信号的高阶统计性质自适应的改变以适应不同的要求,从而在一定程度上解决了ICA算法中选取估计信号评价函数的问题.模拟实验说明了所提算法的性能优越性. Independent component analysis (ICA) is a typical and important blind source separation (BSS) method. It is to recover source signals which are considered statistically independent given only the outputs of a number of sensor mixed signals. How to choose a model of the score functions of the unknown source signals is a basic and important problem in most ICA algorithm. This is usually achieved based on the parametric and nonparametric density estimation approaches. Classical ICA algorithms fit parametric models for the hidden sources. Moreover, most ICA algorithms always assume that the distribution of source signals has a priori knowledge, but this is difficult to obtain in many situations. It has been realized that the unknown distributions of hidden sources can be estimated by nonparametric methods, some authors have discussed the nonparametric ICA method, but the kernel they used was fixed which made the algorithm does not robust in some conditions. How to develop unified nonparametric ICA algorithms, which enable to separate hybrid source signals including symmetric and asymmetric distributions with self-adaptive score functions, is very important. In this paper, efficient ICA algorithm based on generalized Gaussian density (GGD) kernel is proposed using a linear ICA neural network which can separate hybrid mixture of source signals which include both symmetric and asymmetric distribution sources. The proposed ICA algorithm is able to separate the hybrid mixtures of source signals using only a flexible model. Moreover, the GGD kernel can adaptively adjust its shaping and scaling parameter according to the high order statistics of the source signals. It paves the way to wider applications of ICA methods to real world signal processing. Simulations confirm the effectiveness of the proposed algorithm.
出处 《南京大学学报(自然科学版)》 CSCD 北大核心 2012年第2期198-205,共8页 Journal of Nanjing University(Natural Science)
基金 国家自然科学基金(61001213 61071188) 国防基础预研基金(B1420110193)
关键词 独立成分分析 评价函数 极大似然 非参数估计 神经网络 independent component analysis, score function, maximum likelihood, non-parametric estimation neural network
  • 相关文献

参考文献13

  • 1Hyvarinen A,Karhunen J,Oja E. Independent component analysis[M].New York..John Wiley and Sons,2001.476.
  • 2王法松,张林让.基于自然梯度的独立子空间盲信号处理方法[J].南京大学学报(自然科学版),2011,47(4):420-425. 被引量:4
  • 3Comon P,Jutten C. Handbook of blind source separation:Independent component analysis and applications[J].Oxford:Elsevier,2010.772.
  • 4Comon P. Independent component analysis: A new concept[J].Signal Processing,1994,(03):287-314.
  • 5Bell A,Sejnowski T. An information maximiza tion approach to blind separation and blind de convolution[J].Neural Computation,1995,(06):1129-1159.
  • 6Amari S,Cichocki A,Yang H H. A new learn- ing algorithm for blind signal separation[J].Neural Information Processing System,1996.757-763.
  • 7Cardoso J F. High-order contrasts for inde- pendent component analysis[J].Neural Computa- tion,1999,(01):157-192.
  • 8Lee T W,Girolami M,Sejnowski T. Independ ent component analysis using an extend infomax algorithm for mixed sub-Gaussian and super Gaussian sources[J].Neural Computation,1998,(02):417-441.
  • 9Zhang X D,Zhu X L,Bao Z. Grading learning for blind source separation[J].Science in China(Series F),2003,(01):31-44.doi:10.3969/j.issn.1674-733X.2003.01.003.
  • 10Wang F S,Li H W,Li R. Unified nonparamet- ric and parametric ICA algorithm for hybrid source signals and stability analysis[J].Interna- tional Journal of Innovative Computing Infor-mation and Control,2008,(04):933-942.

二级参考文献15

  • 1Cichocki A, Amari S. Adaptive blind signal and image processing: Learning algorithms and ap- plications. New York: John Wiley and Sons, 2002.
  • 2Comon P, Jutten C. Handbook of blind source separation independent component analysis and applications. Oxford.. Elsevier, 2010.
  • 3Li R, Li H W, Wang F S. Dependent compo- nent analysis: Concepts and main algorithms. Journal of computers, 2010, 5(4):589-597.
  • 4Poczos B, Lorincz A. Independent subspace a- nalysis using k-nearest neighborhood distances. Lecture Notes in Computer Science, 2005, 3697: 163-168.
  • 5Hyvarinen A, Koster U. FastISA: A fast fixed-point algorithm for independent subspace analysis. Proceedings of European Symposium on Artificial Neural Networks, Bruges, Bel- gium, 2006, 371-376.
  • 6Theis F J. Towards a general independent sub- space analysis. Proceedings of Neural Informa- tion Processing Systems, 2007, 1361-1368.
  • 7Bach F R, Jordan M I. Kernel independent component analysis. Journal of Machine Learn ing Research, 2002, 3:1-48.
  • 8Hyvarinen A, Hoyer P. Emergence of phase and shift invariant features by decomposition of natural images into independent feature sub- spaces. Neural Computation, 2000, 12:1705-1720.
  • 9Cardoso J F. Multidimensional independent component analysis. Proceedings of the IEEE 1998 International Conference on Acoustics, Speech, and Signal Processing, 1998, 1941-1944.
  • 10Theis F J. Blind signal separation into groups of dependent signals using joint block diagonaliza- tion. Proceedings of International Symposium on Circuits and Systems, 2005, 5875-5881.

共引文献3

同被引文献19

  • 1何宁,谢磊,郭明,王树青.基于独立成分的动态多变量过程的故障检测与诊断方法[J].化工学报,2005,56(4):646-652. 被引量:8
  • 2赵慧洁,李娜,贾国瑞,董超.改进独立成分分析在高光谱图像分类中的应用[J].北京航空航天大学学报,2006,32(11):1333-1336. 被引量:6
  • 3胡寿松,张正道.基于神经网络的非线性时间序列故障预报[J].自动化学报,2007,33(7):744-748. 被引量:16
  • 4Seung-hyun Jin, Peter Lin, Mark Hallett.Linear and nonlinear information flow based on time-delayed mutual information method and its application to corticomuscular interaction[J].Clinical Neurophysiology, 2010, 121:392-401.
  • 5Mondi S, Kharitonov V L.Exponential estimates for retarded time-delay systems:an LMI approach[J].IEEE Transactions on Automatic Control, 2005, 50:268-273.
  • 6Ren X, Rad A, Chan P, Lo W.Online identification of continuous-time systems with unknown time delay[J].IEEE Transactions on Automatic Control, 2005, 50:1418-1422.
  • 7Wang Huiwei, Song Qiankun.State estimation for neural networks with mixed interval time-varying delays[J].Neurocomputing, 2010, 73:1281-1288.
  • 8Ni Boyi, Xiao Deyun, Sirish L Shah. Time delay estimation for MIMO dynamical systems with time-frequency domain analysis[J].Journal of Process Control, 2010, 20:83-94.
  • 9Samir Shaltaf.Neuro-fuzzy based time-delay estimation using DCT coefficients[J].ISA Transactions, 2007, 46:21-30.
  • 10Lu N Y, Wang L, Jiang B, et al.Fault prognosis for process industry based on information synchronization//Proceedings of IFAC Word Congress[C].Milan, 2011.

引证文献1

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部