期刊文献+

一种有效的运动物体检测方法

A Effective Algorithm of Moving Object Detection
下载PDF
导出
摘要 为了从监控视频中检测出较高质量的运动物体,文章提出了一种基于帧间差分和背景差分相结合的运动目标的检测方法,并且采用像素级和帧级背景更新相配合的一种背景更新策略。算法求取各像素点处的最大概率灰度,从而提取出连续视频的背景图像;相邻帧则利用帧间差分法以及背景差分法得到两幅运动区域图像;将两幅运动区域图像相与,提取出较为准确的运动目标。实验证明,该算法对光线的变化鲁棒性较高,运算速度较快,且能够及时的响应监控视频的实时变化,提高运动目标的检测质量。 To extract good moving object from surveillance video, this paper proposes an algorithm of background extraction based on both flame-difference and background subtraction, and using multi-level adaptive background update strategy. Reconstructed the background image of continuous video frequency by calculating the maximum probability grayscale. Gained two moving regions by frame difference and background subtraction, took out moving objects by logic and the two subtracting moving regions. Experiment shows it is a practical method that is robust under lighting variations and computing speed. The algorithm can response timely to the surveillance video changes and improve the quality of moving objects detection.
出处 《电脑与信息技术》 2012年第2期16-19,共4页 Computer and Information Technology
关键词 运动目标检测 帧间差分 背景差分 背景提取 moving object detection frame-difference background subtraction background extraction
  • 相关文献

参考文献7

二级参考文献41

  • 1邱尚斌,李刚,林凌.一种新的运动目标检测和背景更新方法[J].辽宁工学院学报,2005,25(1):10-12. 被引量:10
  • 2侯志强,韩崇昭.基于像素灰度归类的背景重构算法[J].软件学报,2005,16(9):1568-1576. 被引量:97
  • 3胡炜炜,李树广,吴舟舟.序列图像的自适应背景提取及车型分类[J].计算机工程与应用,2007,43(12):239-242. 被引量:8
  • 4Stringa E,Regazzoni C S.Real-time video-shot detection for scene surveillance applications[J].IEEE Transactions on Image Processing, 2000( 1 ) :69-79.
  • 5Versavel J.Road safety through video deteetion[C]//Proeeedings of 1999 IEEE/IEEJ/JSAI International Conference on Intelligent Trans- portation Systems, 1999:753-757.
  • 6Collins R.A system for video surveillance and monitoring:VSAM final report,CMU-RI-TR-00-12[R].Carnegie Mellon University, 2000.
  • 7Kong Jun,Zheng Ying,Lu Ying-hua,et al.A novel background extraction and updating algorithm for vehicle detection and trackin[C]// Forth International Conference on Fuzzy Systems and Knowledge Discovery, 2007,3 : 464-468.
  • 8Fujiyoshi H, Lipton A. Real-time Human Motion Analysis by Image Skeletonization[C]//Proc. of WACV'98. Princeton, USA: [s. n.], 1998: 15-21.
  • 9Picardi M. Background Subtraction Techniques: A Review[C]//Proc. of IEEE International Conference on Systems, Man and Cybernetics. Hague, Holland: [s. n.], 2004: 3099-3104.
  • 10Collins R, Lipton A, Kanade T, et al. A System for Video Surveillance and Monitoring[R]. Robotics Institute, Carnegie Mellon University, Tech. Rep.: CMU-RI-TR-00-12, 2000.

共引文献136

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部