期刊文献+

基于振荡迭代的修正BP译码算法 被引量:2

A Modified belief propagation decoding algorithm for low-density parity-check codes based on oscillating iteration
下载PDF
导出
摘要 针对中高信噪比(SNR)下低密度奇偶校验(LDPC)译码错误振荡迭代不收敛,提出了基于置信传播(BP)算法的修正LDPC译码算法,即软值归零BP算法。该算法通过将振荡迭代的变量节点传递的外信息置零,减少错误信道消息对迭代译码的影响,较大地改善了译码性能。而且,还给出了振荡迭代节点的判定准则,提高了振荡迭代节点判定的准确性。仿真结果表明,在中高信噪比区且译码迭代次数相同的情况下,该算法能比BP算法获得更好的译码性能。 According to no-convergence of falsely oscillating iteration in the low-density parity-check (LDPC) decoding at the range from medium to high SNRs(Signal to Noise Ratios), we propose a modified LDPC belief propagation(BP) decoding algorithm, i.e. soft value zero-forcing BP algorithm. By setting extrinsic information of the oscillating iteration bit nodes into zero, the impact on the iteratively decoding from false channel information is greatly reduced. And it also improves the performance of the decoding algorithm. Furthermore, a decision criterion of oscillating iteration nodes is presented to increase the accuracy of the decision. Simulation results show that the proposed algorithm has better decoding performance than that of the BP algorithm with the same iterations at medium and high SNRs.
出处 《电路与系统学报》 CSCD 北大核心 2012年第2期100-105,共6页 Journal of Circuits and Systems
基金 国家自然科学基金委员会与中国工程物理研究院联合基金项目(10776007) 国家自然科学基金(61001133)
关键词 低密度奇偶校验码 软值归零 判定准则 振荡 low-density parity-check codes soft value zeroing judgment criteria oscillation
  • 相关文献

参考文献11

  • 1陈昕,门爱东.基于可靠性更新的低复杂度BP译码算法[J].电子与信息学报,2009,31(10):2421-2426. 被引量:5
  • 2刘建权,徐友云,蔡跃明.基于伴随向量和的软值翻转LDPC译码算法[J].通信学报,2009,30(9):60-68. 被引量:2
  • 3Satoshi Gounai,Tomoaki Ohtsuki,Toshinobu Kaneko.Modified belief propagation decoding algorithm for low-density parity-check codebased on oscillation[].IEEE rd Vehicular Technology ConferenceVTC -Spring.2006
  • 4S H Lee,W H Lee,J J Bae,et al.Bit probability transition characteristics of LDPC code[].Proceeding of thInternational Conference onTelecomm.2003
  • 5Gounai S,Ohtsuki T.Decoding algorithm based on oscillation for low density parity check codes[].IEICE TransFund.2006
  • 6Zhi-qiang Cui,Lu-pin Chen,Zhong-feng Wang.An efficient early stopping scheme for LDPC decoding based on check-node message[].Proceedings of thIEEE Singapore International Conference on Communication Systems.2008
  • 7Gallager RG.Low-Density Parity-Check Codes[]..1963
  • 8McEliece RJ,MacKay DJC,Cheng JF.Turbo decoding as an instance of Pearl’s "belief propagation" algorithm[].IEEE Journal on Selected Areas in Communications.1998
  • 9LECHNER G,,SAYIR J.On the convergence of log-likelihood valuesin iterative decoding[].Proc of Mini-Workshop on Topics in Infor-mation Theory.2002
  • 10ALGHONAIM E,EL-MALEH A,LANDOLSI M A.New techniquefor improving performance of LDPC codes in the presence of trappingsets[].EURASIP Journal on Wireless Communications andNetworking.2008

二级参考文献30

  • 1MACKAY D J C. Good error-correcting codes based on very sparse matrices[J]. IEEE Trans Inform Theory, 1999, 45(2): 399-431.
  • 2FOSSORIER M, MIHALJEVIC M, IMAI H. Reduced complexity iterative decoding of low density parity check codes based on belief propagation[J]. IEEE Trans Commun, 1999, 47(5): 673-680.
  • 3YAZDANI M R, HEMATI S, BANIHASHEMI A H. Improving belief propagation on graphs with cycles[J]. IEEE Commun Letters, 2004, 8(1): 57-59.
  • 4GOUNAI S, OHTSUKI T. Decoding algorithm based on oscillation for low density parity check codes[J]. IEICE Trans Fund, 2005, E88-A(8): 2216-2226.
  • 5DI C, PROIETTI D, TELATAR I E, et al. Finite-length analysis of low density parity check codes on the binary erasure channel[J]. IEEE Trails Inform Theory, 2002, 48(6): 1570-1579.
  • 6MACKAY D J C, POSTOL M S. Weaknesses of margulis and ramanujan-margulis low density parity check codes[J]. Electronic Notes in Theoretical Computer Science, 2003, 74: 1-8.
  • 7RICHARDSON T. Error floors of LDPC codes[A]. Proc 41^st Allerton Conf on Communications, Control, and Computing[C]. Allerton House, Monticello, Illinois, USA, 2003.
  • 8VONTOBLE P O, KOETTER R. Graph-cover decoding and finite-length analysis of message-passing iterative decoding of LDPC codes[EB/OL], http://arxiv.org/abs/cs.IT/0512078, 2006.
  • 9MAO Y, BANIHASHEMI A H. Decoding low density parity check codes with probabilistic schedule[J]. IEEE Commun Letters, 2001, 5(10): 414-416.
  • 10ZHA_NG J, FRSSORIER M. Shuffles belief propagation decoding[J]. IEEE Trans Commun, 2005, 53(2):209-211.

共引文献4

同被引文献14

  • 1王昕,袁东风.借助LDPC码提高数字水印鲁棒性[J].计算机工程与科学,2006,28(8):140-142. 被引量:5
  • 2Iqbal H, Ming X, Rasmussen L K. LT Coded MSK over AWGN Clqannels[C]//Proc. of the 6th International Sympo- sium on Turbo Codes & Iterative Information Processing. [S. 1.]: IEEE Press, 2010: 289-293.
  • 3Luby M. LT Codes[C]//Proc. of the 43rd Annual IEEE Symposium on Foundations of Computer Science. [S. 1.]: IEEE Press, 2002:271-280.
  • 4姜明,王晨.基于原型图的低码率LDPC码最小和译码算法改进方案[J].电子信息学报,2010,32(11):2781-2784.
  • 5Lechner G, Sayir J. On the Convergence of Log-likelihood Values in Iterative Decoding[EB/OL]. (2002-12-30). http:// www.gottfriedlechner.com/homepage/Publications_files/essen- paper.pdf.
  • 6David J C. Fountain Codes[J]. IEE Proceedings-Communi- cations, 2005, 152(6): 1062-1068.
  • 7Gilbert B. A Precise Four-quadrant Multiplier with Subnano- second Response[J]. IEEE Journal of Solid-state Circuits, 1968, 3(4): 365-373.
  • 8Loeliger H A, Lustenberger F, Helfenstein M, et al. Probability Propagation and Decoding in Analog VLSI[J]. IEEE Transactions on information Theory, 2001, 47(2): 837- 843.
  • 9Lechner G. Convergence of Sum-product Algorithm for Finite Length Low-density Parity-check Codes[D]. Monte Verita, Switzerland: Winter School on Coding and Information Theory, 2003.
  • 10Omid E, Amin S. Raptor Codes on Binary Memoryless Symmetric Channels[J]. IEEE Transactions on Information Theory, 2006, 52(5): 2033-2051.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部